阿里在KDD 2018上开放了它们的方法:《Deep Interest Network for Click-Through Rate Prediction》, 我们来看下:

背景

在电商网站上,比如:阿里巴巴,广告是天然的商品。在本paper的剩余部分,如果没有特别声明,我们会将广告(ads)看成是商品。图1展示了在Alibaba的展示广告系统的运行过程,它包含了两个主要stages:

  • i) 匹配阶段(matching):它会通过类似CF的方法生成与正访问用户相关的候选广告列表
  • ii) 排序阶段(ranking):它会为每个给定广告预测ctr,接着选择topN个排序后广告

1.png

图1

每天,有上亿用户访问是电商网络,留给我们大量用户行为数据。值得一提是,带有丰富历史行为的用户包含了多样化的兴趣。例如,一个年轻母亲最近浏览的商品包含:羊毛大衣、T恤、耳环、大手提包、皮手袋、婴儿衣。这些行为数据给了我们一些关于它的购物兴趣的线索。当她访问电商网站时,系统会将合适的广告展示给她,例如,一个新的手提包。很明显,展示广告只会匹配(matches)或者激活(activates)她的部分兴趣。总之,具有丰富用户行为数据的用户兴趣很多样(diverse),可能会受特定广告的局部影响(locally activated)。我们会在paper后展示利用这些特性来构建ctr模型。

4. DIN

不同于竞价排名搜索(sponsored search),用户进入展示广告系统无需显式的意愿。当构建ctr模型时,需要有效方法来从历史行为中抽取用户兴趣。描述users和ads的特征是在CTR模型中的基本元素。合理充分利用这些特征,以及从它们中挖掘信息很关键。

4.1 特征表示

在工业界CTR预测任务中的数据大多数以多分组类别型(multi-group catgorial)形式存在,例如: [weekday=Friday, gender=Female,visited_cate_ids={Bag,Book}, ad_cate_id=Book], 它通常通过encoding[4,19,21]被转换成高级稀疏二值特征。数学上,第i个特征组(feature group)的编码向量可以使用公式化表示:表示特征组i的维度,这意味着特征组i包含了个唯一的ids。第j个元素,并且满足k=1的向量指的是one-hot encoding,而k>1表示multi-hot encoding。接着,一个实例可以以group-wise的形式被表示成:,其中M是特征组的数目,,其中K是整个特征空间的维度。在该方法下,上述实例会有4个分组的特征,如下所示:

我们系统中用到的整个特征集在表1中描述。它由4个类别组成,用户行为特征通常使用multi-hot encoding向量并包含了关于用户兴趣的丰富的信息。注意,在我们的setting中,没有组合特征(combination features)。我们会使用DNN来捕捉特征的交叉。

4.2 Base Model (Embedding & MLP)

2a.png

2b.png

图2

大多数流行的模型结构[3,4,21]共享一个相似的Embedding&MLP范式,我们称之为base model,如图2左侧所示。它包含了许多部件:

Embedding layer。由于输入是高维二值向量,embedding layer被用于将他们转换成低维dense表示。对于第i个feature group,假设 表示第i个embedding字典,其中是一个具有维度为D的embedding vector。Embedding操作会遵循查表机制,如图2所示。

  • 如果是one-hot vector,其中第j个元素的embedded表示是一个单一embedding vector
  • 如果是multi-hot vector,其中对于的embedded表示是一个embedding vectors列表:

Pooling layer和Concat layer。注意,不同用户具有不同数目的行为。因而对于multi-hot行为特征向量,它的非零值数目会各有不同,从而造成相应的embedding vectors的长度是个变量。由于Fully-connected网络只能处理定长输入。常见的做法[3,4]是将embedding vectors的列表通过一个pooling layer来获得一个固定长度的向量:

…(1)

两种最常用的pooling layers是:sum pooling和average pooling。它可以使用element-wise sum/average操作到embedding vectors列表中。

embedding和pooling layers操作两者都会以group-wise方式将原始稀疏特征映射到多个固定长度表示向量中。接着所有向量被拼接(concatenated)在一起来获得该样本的整个表示向量(overall representation vector)。

MLP。给定拼接后的dense representation vector,FC layers会被用于自动学习特征组合。最近开发的方法[4,5,10]集中于设计MLP的结构来更好的进行信息抽取。

Loss。base model的目标函数为负log似然函数:

…(2)

其中S是size N的训练集,x是网络输入,是label,p(x)是在softmax layer后的网络输出,它表示样本x被点击的预测概率。

4.3 DIN结构

在表1的所有这些特征中,用户行为特征十分重要,它在电商应用场景中对于建模用户兴趣时扮演重要角色。

t1.png

表1

Base model可以获取关于用户兴趣的固定长度的表示向量,它通过将所有embedding vectors在用户行为feature group上进行pooling,如等式(1)所示。该表示向量对于一个给定的用户来说保持相同,具有有限维度的用户表示向量在表现用户的多样化兴趣时会是一个瓶颈。为了让它可行,一种简单的方法是扩展embedding vector的维度,但很不幸的是这将极剧地增加学习参数的size。这会导致在有限数据下的overfitting,并增加了计算和存储的负担,这对于一个工业界在线系统是不可接受的。

是否存在一种更优雅的方式,在一个向量中使用有限维来表示用户的多样化兴趣?用户兴趣的局部活跃性(local activation characteristic)给了我们启发,我们设计了一个新模型,称为DIN(Deep interest network)。想像下,当一个年轻母亲访问了电商网站,她找到了展示的新手提包,并点击了它。我们仔细分析下点击行为的驱动力。通过对这位年轻母亲的历史行为进行软搜索(soft-searching),并发现她最近浏览过手提袋(tote bag)和皮手袋(leather handbag)相似的商品,展示广告点刚好与她的兴趣相关。换句话说,行为相关的展示广告可以对点击行为做出重大贡献。DIN在局部活跃兴趣对于给定广告的表示(representation)上有一定注意力(pay attention to),来模仿该过程。DIN不需要使用相同的向量来表示所有用户的多样化兴趣,它会考虑到历史行为与候选广告间的相关度,自适应地计算用户兴趣的向量表示。这种representation vector会随广告的不同而改变

图2的右侧展示了DIN的结构。对比起base model,DIN引入了新设计和局部激活单元(local activation unit),其它的结构完全相同。特别的,activation units可以应用到用户行为特征上,它会执行一个加权求和平均(weighted sum pooling)来自适应地计算在给定一个候选广告A时用户表示(user representation ),如公式(3):

…(3)

其中:

  • 是用户u的行为的embedding vectors列表,它的长度为H
  • 是广告A的embedding vector。
  • 会随着不同的广告而变化。
  • 是一个feed-forward网络,它的输出作为activation weight,如图2所示。

除了两个input embedding vectors外,会添加它们的外积(output product)来feed到后续网络中,这对于帮助相关度建模来说是显式可知的。

等式(3)的局部激活单元与NMT任务[1]中的attention方法的思想一致。然而,不同于传统的attention方法,在等式(3)中没有的限制,从而可以存储用户兴趣的强度(intensity)。也就是说,在的output上进行softmax归一化会被取消。做为替代,的值被看成是:在某种程度上,对活跃用户兴趣的强度的一个近似。例如,如果一个用户的历史行为包含了90%的衣服类,10%电子类。给定两个候选广告(T-shirt和phone),T-shirt会激活大多数那些属于衣服(clothes)的历史行为,并可能给出一个比手机(phone)的更大值。传统的attention方法通过对 的output进行归一化会丢掉在在数值范围上的辩识度。

我们以序列的方式尝试了LSTM来建模用户历史行为数据。但结果展示并没有提升。不同于在NLP任务中语法限制下的文本,我们的用户历史行为序列可能包含多个并发兴趣(concurrent interests)。在这些兴趣上快速跳过和突然结束,会造成用户行为序列数据看起来有噪声。一个可能的方向是,设计特殊结构来以序列方式建模这样的数据。我们会在后续进行研究。

5.训练技术

在Alibaba的广告系统中,商品和用户的数目规模达到上亿。实际上,训练具有大规模稀疏输入特征的工业界深度网络,十分具有挑战性。在本部分,我们引入了两个实际中很有用的重要技术。

5.1 Mini-batch Aware正则化

训练工业界网络,overfitting是很严峻的挑战。例如,除了细粒度特征外,比如:商品id(goods_ids)这样的特征维度有60亿维(包含了表1描述的关于用户的visited_goods_ids,以及关于ad的goods_id),在训练期间,如果没有正则化(regularization),模型性能在第一个epoch之后会快速下降,如6.5节的图4的黑绿线所示。在训练具有稀疏输入和数亿参数的网络时,直接使用传统的正则化方法(l2和l1正则化)并不实际。以l2正则为例:只有出现在每个mini-batch上的非零稀疏特征,需要在SGD的场景下基于无需正则化的最优化方法被更新。然而,当添加l2正则时,它需要为每个mini-batch的所有参数之上计算l2-norm,这会导致严重的计算开销,当参数扩展至数亿时是不可接受的。

3.png

图3

在本paper中,我们引入了一种有效的mini-batch aware regularizer,它只需要计算出现在每个mini-batch上的稀疏特征参数的l2-norm,这使得计算是可行的。事实上,对于CTR网络来说,embedding字典贡献了大多数参数,并带来了严重计算开销。假设表示整个embedding字典的参数,其中D是embedding vector的维度,K是feature space的维度。我们通过抽样(samples)扩展了在W上的l2正则:

…(4)

其中,是第j维的embedding vector,表示如果实例x具有特征id j,表示特征id j在所有样本中的出现次数。等式(4)可以以mini-batch aware的方式被转换成公式(5):

…(5)

其中B表示mini-batch的数目,表示第m个mini-batch。假设表示是否存在至少一个实例在mini-batch 上具有特征id j。那么等式(5)可以近似为:

…(6)

这种方式下,我们对一个近似的mini-batch aware版本的l2正则进行求导。对于第m个mini-batch,对于特征j的各embedding weights的梯度:

…(7)

其中,只有出现在第m个mini-batch特征参数参与正则计算。

5.2 数据自适应激活函数(Data Adaptive Activation Function)

PReLU[12]是一种常用的activation函数:

…(8)

其中,s是activation函数输入的某一维,是一个指示函数(indicator function),它控制着在两个通道间的切换。是一个可学习参数。这里我们将看成是控制函数。图3的左侧画出了关于PReLU的控制函数。PReLU会采用一个在0值处的硬修正点(hard rectified point),当每个layer的输入遵循不同的分布时它可能并不适合。考虑这一点,我们设计了一种新的data adaptive activation function,称为Dice:

…(9)

控制函数会在图3的右键进行绘制。在训练阶段,是在每个mini-batch中输入的均值(mean)和方差(variance)。在测试阶段,通过在数据上E[s]和Var[s]的移动平均来计算。是一个小的常数,在我们的实践中可以被设置成

Dice可以被看成是PReLu的一种泛化。Dice的关键思想是,会根据输入数据的分布自适应调整修正点(rectified point),它们的值被置成输入的平均(mean)。另外,Dice会平滑控制着在两个通道间的切换。当时,Dice会退化成PReLU.

6. 实验

在本节中,我们进行实验,包含数据集、评估指标、实验设置、模型比较、以及对应的分析。实验会在关于用户行为的两个公共数据集上进行,同时也会在alibaba的展示广告系统中收集到的数据集上进行,效果会与state-of-the-art的CTR预估方法进行比较。两个公共数据集和实验代码在github上有提供。

6.1 数据集和实验设定

Amazon数据集: Amazon数据集包含了产品评论和元数据,可以用于benchmark数据集[13,18,23]。我们在一个称为“电子产品(electronics)”的子集上展开实验,它包含了192403个用户,63001个商品,801个类目,以及1689188个样本。在该数据集上的用户行为很丰富,对于每个用户和每个商品超过5个评论。特征包含:goods_id, cate_id, 用户评论的goods_id_list和cate_id_list。假设一个用户的所有行为是,任务是:通过利用前k个评论的商品,预测第(k+1)个评论的商品。会为每个用户使用k=1,2,…,n-2来生成训练数据集。在测试集上,我们给定前n-1个评论的商品预测最后一个。对于所有模型,我们使用SGD作为optimizier,使用指数衰减,它的learning rate从1开始,衰减率设置为0.1.mini-batch设置为32.

MovieLens Dataset:MovieLens数据[11]包含了138493个用户,27278个电影,21个类目和20000263个样本。为了让ctr预测任务更合适,我们将它转成一个二分类数据。原始的用户对电影评分是[0,5]间的连续值,我们将4和5以上的样本标记为正样本(positive),其余为负样本。我们基于userID将数据划分成训练和测试数据集。在138493个用户中,其中10w被随机选到训练集上,其余38493为测试集。任务是基于用户行为预测用户是否会对一个给定的电影给出3以上的评分。特征包括:movie_id, movie_cate_id以及用户评分列表movie_id_list,movie_cate_id_list。我们使用与Amazon数据集相同的optimizer,learning rate和mini-batch size。

Alibaba数据集:我们从Alibaba的在线展示广告系统中收集了真实流量日志,两种的样本用于训练集、其余用户测试集。训练集和测试集的size各自大约为20亿、0.14亿。 对于所有deep模型,所有16个组的特征的embedding vector的维度为12. MLP的Layers设置为 192 x 200 x 80 x 2. 由于数据量很大,我们将mini-batch size设置为5000,并使用Adam作为Optimizier。我们使用指数衰减,它的learning rate初始为0.001,接着decay rate设置为 0.9.

上述数据集相关的统计数据如表2所示。

t2.png

表2

6.2 算法比较

  • LR: 较弱baseline
  • BaseModel: 如第4.2节所示,BaseModel采用Embedding&MLP架构。作为较强baseline
  • WideDeep:
  • PNN:
  • DeepFM:

6.3 指标

在CTR预测领域,AUC是广泛使用的指标。它可以测量使用预估CTR对所有ads排序的好坏(包括intra-user和inter-user顺序)。用户加权AUC在[7,13]中引入,它通过在用户上对AUC进行平均,来测量intra-user序的好坏,在展示广告系统中会展示出与在线效果更相关。在实验中我们采用该指标。出于简洁性,我们仍将它看成是AUC。计算如下:

…(10)

其中n是用户数,是impression数,AUC对应于第i个用户。

另外,我们根据[25]来介绍RelaImpr指标来测量模型的相对提升。对于一个随机猜测器(random guesser),AUC的值为0.5. 因此,RelaImpr按如下定义:

…(11)

6.4 在Amazon数据集和MovieLens数据集上的结果比较

6.7

6.8 DIN可视化

最后,我们结合案例研究来展示DIN在Alibaba数据集上的内部结果。我们首先确认了局部激活单元(local activation unit)的有效性。图5展示了用户行为各自对应一个候选广告上的激活强度(activation intensity)。正如我们所预料到的,与候选广告具有高相关性的权重更高。

我们接着将学到的embedding vectors进行可视化。还是以之前的年轻母亲为例,我们为该用户随机选择9个类型(dress、sport shoes、bags、等)以及每个类目下的100个商品作为候选广告。图6展示了通过DIN学到的商品embedding vectors的可视化,它使用t-SNE进行表示,相同形状对应相同的类目。我们可以看到,相同类目的商品几乎属于一个聚类,这很明显展示了DIN embeddings的聚类特性。另外,我们通过预测值对候选广告进行着色。图6是这位妈妈在embedding空间上的兴趣密度分布的一个热度图。它展示了DIN可以在候选集的embedding space上,为一个特定用户捕获它的多样化兴趣,从而构成一个多模态兴趣密度分布。

图6

7.结论

在本paper中,我们关注CTR预测任务在电商展示广告场景下的建模。在传统deep CTR模型上使用固定长度的表示(representation)对于捕获用户兴趣多样性(diversity)来说是个瓶颈。为了提升模型的表现力,设计了一种称为DIN的新方法,来激活相关的用户行为,从而为用户兴趣在不同的广告上获取一个自适应表示向量。另外,我们引入了两种新技术来帮助训练工业界深度网络,从而进一步提升DIN的效果。他们可以很方便地泛到到其它工业界deep learning任务上。DIN现在已经在Alibaba中在线展示广告系统上部署。

参考

阿里在KDD 2018上开放了它们的方法:《Billion-scale Commodity Embedding for E-commerce Recommendation in Alibaba》, 我们来看下:

介绍

互联网技术持续改变着商业版图,电商变得无处不在。Alibaba blala,10亿用户,2017 GMV是37670亿rmb,2017收入是1580亿rmb。blala。

淘宝有10亿users和2亿items,最重要的问题是,如何帮助用户快速发现需要和感兴趣的items。推荐系统对于达成这个目标来说至关重要。例如,淘宝移动APP的主页(图1),会基于用户过去的行为结合推荐技术生成,贡献了40%的总推荐流量。再者,在淘宝上,收入和流量的大头都来自推荐。简言之,推荐是taobao和alibaba的GMV和收入的核心引擎。尽管在学术界和工业界大多数推荐方法都能获得成功(例如:CF,基于内容的方法,基于deeplearning的方法),但是在淘宝,这些方法面对的问题变得更严峻,因为有海量的用户和海量的items存在。

图1: 虚线框的区域对于淘宝10亿用户来说是个性化的。为了更好的用户体验,吸引人的图片和方案描述也同样是生成的。注意,Taobao移动端主页贡献了40%的总推荐流量

这里淘宝推荐系统有三个主要的技术挑战:

  • 可扩展性(Scalability):尽量许多已经存在的推荐方法可以在小规模数据集上能很好工作(例如:数百万的users和items),但它们通常会在淘宝的海量数据集上试验失败。
  • 稀疏性(Sparsity):由于用户趋向于只与小部分的items交互,特别是当users或items只有少量交互时,很难训练一个精准的推荐模型。这通常被称为“sparsity”问题。
  • 冷启动(cold start):在淘宝,数百万的新items会在每小时持续被上传。这些items没有用户行为。处理这些items、或者预测用户对这些items的偏好是个挑战,这被称为“cold start”问题。

为了解决这些挑战,我们在淘宝技术平台上设计了two-stage推荐框架。第一阶段称为matching,第二阶段为ranking。在matching阶段,我们会生成一个候选集,它的items会与用户接触过的每个item具有相似性;接着在ranking阶段,我们会训练一个深度神经网络模型,它会为每个用户根据他的偏好对候选items进行排序。由于上述挑战的存在,在两个阶段都会面临不同的问题。另外,每个阶段的目标不同,会导致技术解决方案的不同。

在本paper中,我们主要关注如何解决在matching阶段的挑战,其中,核心任务是,基于用户行为,计算所有items的两两(pairwise)相似度。在获取items的pairwise相似度后,我们可以生成一个items候选集合,进一步在ranking阶段使用。为了达到该目的,我们提出了根据用户行为历史构建一个item graph,接着使用state-of-art的graph embedding方法[8,15,17]来学习每个item的embedding,这被称为BGE(Base Graph Embedding)。在这种方式下,我们可以基于items的embeddings向量进行点乘来计算候选items集合的相似度。注意,在之前的工作中,基于CF的方法来计算这些相似度。然而,基于CF的方法只考虑了在用户行为历史上的items的共现率。在我们的工作中,会在item graph中使用random walk,来捕获items间的高维相似性。这样,它比基于CF的方法要好。然而,为少量或者没有交互行为的items学到精准的embeddings仍是个挑战。为了减轻该问题,我们提供了使用side information来增强embedding过程,这被称为使用Side information的Graph Embedding(Graph Embedding with Side information (GES))。例如,属于相似的类目或品牌的items在embedding space空间应更接近。在这种方式下,即使items只有少数互交或没有交互,我们也可以获取精确的items embedding。然而在淘宝,有许多种类型的side information。比如类目(category)、品牌(brand)、或价格(price)等,直觉上不同的side information对于学习items的embeddings的贡献也不一样。因而,我们进一步提出了一种加权机制来使用,这被称为Enhanced Graph Embedding with Side information(EGES)

总之,matching阶段有三个重要的部分:

  • (1) 基于在淘宝这些年的实践,我们设计了一个有效的启发式方法,基于在淘宝上10亿多用户的行为历史来构建item graph。
  • (2) 我们提供了BGE,GES和EGES,来学习在淘宝上20亿items的embeddings。我们进行离线实验来演示:GES和EGES与BGE、以及其它embedding方法对比的效果。
  • (3) 为了部署十亿级users和items的方法,我们基于baobao XTensorflow(XTF)平台来构建graph embedding systems。我们展示了提出的框架可以极大提升在taobao移动端app上的推荐效果,同时能满足在双十一节上的训练效率和实时服务。

paper的其余部分组织如下:第2节介绍三种embedding方法。第3节介绍离线和在线实验结果。第4节介绍在taobao上的系统部署。第5节回顾相关工作。第6节收尾。

2.框架

这一节,首先引入graph embedding的基础,接着详述如何从用户行为历史上构建item graph。最后,我们研究了在淘宝上进行学习items embeddings的方法。

2.1 前提条件

本节,我们会给出一个关于graph embedding的总览,会采用一个很流行的方法:DeepWalk;在此基础上,我们提出了在matching阶段我们的graph embedding方法。给定一个graph:,其中V和E分别表示节点集合和边集合。Graph embedding会为空间上的每个节点学习一个低维表示,其中。换句话说,我们的目的是,学习一个映射函数:,(即:在V中的每个节点表示成一个d维向量)。

在[13,14]中,提出了word2vec来学习在语料中的每个词的embedding。受word2vec的启发,Perozzi等提出了DeepWalk来学习在graph中每个节点的embedding。首先通过运行在graph中的random walk来生成节点序列,接着应用Skip-Gram算法来学习在graph中的每个节点表示。为了维持该graph的拓朴结构,他们需要解决以下的优化问题:

…(1)

其中,是节点v的邻节点,可以被定义为从v开始在一跳或两跳内的节点。定义了给定一个节点v后,具有上下文节点c的条件概率。

在本节的其它部分,我们首先会介绍如何从用户行为中构建item graph,接着提供了基于DeepWalk的graph embedding方法来生成在taobao上20亿item上的低维表示。

2.2 根据用户行为构建item graph

图2: 淘宝graph embedding总览: a) **用户行为序列:用户u1对应一个session,u2和u3分别各对应一个session;这些序列被用于构建item graph;b) 有向加权item graph(weighted directed item graph); **c)在item graph上由random walk生成的序列; d) **使用Skip-Gram生成embedding

在本节,我们详述了从用户行为构建item graph。现实中,在淘宝上一个用户的行为趋向于如图2(a)所示的序列。之前基于CF的方法只考虑了items的共现,但忽略了顺序信息(可以更精准地影响用户的偏好)。然而,不可能使用一个用户的整个历史,因为:

  • 1.计算开销和存储开销会非常大
  • 2.一个用户的兴趣趋向于随时间漂移

因此,实际上,我们设置了一个时间窗口,只选择用户在该窗口内的行为。这被称为是基于session的用户行为(session-based)。经验上,该时间窗口的区间是一个小时。

如果我们获取基于session的用户行为,如果两个items它们连续出现,会通过一个有向边进行连接,例如:图2(b)的item D和item A是连接的,因为在图2(a)中用户顺序访问了item D和A。通过利用在淘宝上所有用户的协同行为,我们会为每条边基于在所有用户行为的行连接items中的出现总数分配一个权重。特别的,在所有用户行为历史中,该边的权重等于item i转向item j的频次。这种方法中,构建的item graph可以基于所有用户行为表示不同items间的相似度。

实际上,在我们抽取了用户行为序列之前,我们需要过滤一些非法数据和异常行为来为我们的方法消除噪声。下述行为会被我们的系统认定为噪声:

  • 如果在一次点击后的停留时长少于1秒,该点击可能是无意识的,需要被移除。
  • 在淘宝中有许多”过度活跃(over-active)”用户,它们实际上是有害用户(spam users)。根据我们在淘宝上的时长观察,如果在三个月内,单个用户购买1000个items或者他/她的总点击数超过3500个items,该用户非常可能是一个spam user。我们需要过滤掉这些用户的行为。
  • 淘宝零售商们(Retailers)会保持更新一个商品(commodity)的详情。极端情况下,在淘宝上的一个商品可能在一连串更新后,虽然相同的id,但很可能变成了不同的item。因而,这种item也会根据id进行移除。

2.3 基于图的Embedding(BGE)

在我们获取weighted directed item graph后,表示。我们采用DeepWalk来学习在图G中的每个节点的embedding。假设M表示G的邻近矩阵(adjacency matrix),表示从节点i指向节点j的加权边。我们首先基于随机游走生成节点序列,接着在这些序列上运行Skip-Gram算法。随机游走的转移概率定义如下:

…(2)

其中,表示出链(outlink)的邻节点集合,例如,从出发指向在所有节点的边。通过运行随机游走,我们可以生成如图2(c)所示的许多序列。

接着,我们使用Skip-Gram算法来学习embeddings,它会最大化在获取序列上的两个节点间的共现概率。这会生成以下的优化问题:

…(3)

其中,w是在序列中上下文节点的window size。使用独立假设,我们具有:

…(4)

应用negative sampling,等式4可以转换成:

…(5)

其中,是对于的负采样,是sigmoid函数。经验上,越大,获得的结果越好。

2.4 使用Side Information的GE(GES)

通过应用2.3节的embedding方法,我们可以学到在淘宝上的所有items的embedding,来捕获在用户行为序列上的更高阶相似度,这种特性会被基于CF的方法忽略。然而,对于“冷启动(cold-start)”的items,学到精准的embeddings仍然是个挑战。

为了解决冷启动问题,我们提出了增强式BGE,它会使用side information来与冷启动items做绑定。在商业推荐系统的场景中,side information常指关于一个item的:类目(category),shop(商名),价格(price)等,它们常被当成是ranking阶段的关键特征而广泛使用,但很少用于matching阶段。我们可以通过将side information合并到graph embedding中来缓合cold-start问题。例如,优衣库(UNIQLO:相同店)的两款卫衣(相同类目)可能很相似,一个喜欢Nikon镜头的用户,也可能对Canon相机感兴趣(相似类目和相似品牌)。这意味着这些具有相似的side information的items也可在embedding空间中更接近。基于这个猜想,我们提出了如图3的GES方法。

图3: GES和EGES的总框架。SI表示side information,其中”SI 0”表示item自身。惯例上,1)对于items和不同的SIs,稀疏特征趋向于one-hot-encoder vectors。 2) Dense embeddings是items和相应的SI的表示 3) hidden representation是一个item和它相应的SI的聚合embedding

为了清晰些,我们对概念做了精微调整。我们使用W来表示items或者side information的embedding matrix。特别的,表示item v的embedding,表示绑定到item v上的第s个类型的side information的embedding。接着,对于item v,使用n种类型的side information,我们具有n+1个向量,其中,d是embedding的维度。注意,item embeddings和side information embeddings的维度,经验上设置为相同的值。

如图3所示,为了合并side information,我们为item v将n+1个embedding vectors进行拼接,增加一个layer,使用average-pooling操作来将所有与item v的embeddings进行聚合,它是:

…(6)

其中,是item v的聚合embeddings。这种方法中,我们将side information以这样的方式合并,从而使具有相近side information的items可以在embedding空间内更接近。这会为cold-start items的embeddings更精准些,并且提升了在线和离线的效果。(见第3节)

2.5 增强型EGS(EGES)

尽管GES可以获得收益,但在embedding过程中集成不同类型的side information时,仍存在一个问题。等式(6)中,不同类型的side information对最终的embedding的贡献是相等的,在现实中这不可能。例如,一个购买了IPhone的用户,趋向于会浏览Macbook或者Ipad,因为品牌都是”Apple”;而一个购买了多个不同品牌衣服的用户,出于便利和更低价格,还会在相同的淘宝店上继续购买。因此,不同类型的side information对于在用户行为中的共现items的贡献各不相同。

为了解决该问题,我们提出了EGES方法来聚合不同类型的side information。该框架与GES相同(见图3)。不同之处是,当embeddings聚合时,不同类型的side information具有不同贡献。 因而,我们提出了一个加权平均的average layer来聚合与items相关的side information的embeddings。给定一个item v,假设是权重矩阵(weight matrix),条目是第i个item、第j个类型side information的权重。注意,,即A的首列,表示item v的权限自身。出于简洁性,我们使用来表示关于第v个item的第s个类型的side information的权重,表示item v自身的权重。加权平均层(weighted average layer)会结合不同的side information,定义如下:

…(7)

其中,我们使用来替代,以确保每个side information的贡献大于0, 被用于归一化不同类型side information的embeddings的相关权重。

在训练数据中,对于节点v和它的上下文节点u(即output),我们使用来表示它的embedding,y来表示label。接着,EGES的目标函数变为:

…(8)

为了求解它,梯度求导如下:

…(9)

对于第s个side information:

…(10)

…(11)

EGES的伪代码如算法1如示,加权Skip-Gram updater的伪代码如算法2所示。最终每个item的隐表示通过等式(7)来计算:

算法一:

算法二:

3.实验

本节中,我们引入大量实验来演示这些方法的效果。首先通过链接预测任务评估方法,然后是在Taobao移动端APP上的在线实验。最终,我们提出一些真实case来进一步深入这些方法。

3.1 离线评估

链接预测(Link Prediction)。链接预测任务被用于离线实验,因为它是在网络中的一个基础问题。给定移除某些边的一个网络,预测任务是预测这些链接的出现概率。根据在[30]中相似的实验设置,1/3的边被随机选中及移除,在测试集中作为ground truth,图中剩余的边作为训练集。在测试集中,相同数目的没有边连接的节点对(node pairs)会被随机选中作为负样本。为了评估链接预测的效果,使用AUC得分作为metric。

数据集:我们使用两个数据集来进行链接预测任务。第一个是Amazon Electronics数据集。第二个从Taobao移动端APP抽取。两个数据集都包含了不同类型的side information。对于Amazon数据集,item graph可以从“共同购买(co-purchasing)”的关系中被构建(在提供的数据中由also_bought表示),使用了三种类型的side information,例如:类目(category),子类目(sub-category)以及品牌。对于Taobao数据集,item graph通过第2.2节的方法购建。注意,为了效率和效果,在Taobao真实生产环境中,使用了12种类型的side information,包括:零售商(retailer), 品牌(brand), 购买级别(purchase level), 年代(age), 适用性别(gender), 风格(style), 等等。这些类型的side information根据这些年在taobao的实际经验很有用。两个数据集的统计如表1所示。我们可以看到两个数据集的稀疏性大于99%。

表1

比较方法。引入了4种方法进行实验:BGE, LINE, GES和EGES。LINE在[17]中被提出,它可以捕获在graph embedding中的第一阶和第二阶的邻近关系。我们使用由作者提供的实现,使用第一阶和第二阶邻近(LINE(1st)和LINE(2nd))来运行它。我们实现了其它三种方法。所有这些方法的embedding维度都设置为160.对于我们的BGE、GES和EGES,随机游走的长度为10, 每个节点的walks数目为20, 上下文窗口为5.

表2

结果分析。结果如表2所示。我们可以看到GES和EGES的AUC效果在两个数据集上都要好于BGE、LINE(1st)和LINE(2st)。另换,稀疏性问题也通过合并side information而缓合。当比较Amazon和Taobao的效果时,我们可以看到,在taobao数据集上的效果增益更大。我们将它归功于在Taobao数据集上使用了更多类型的有效的、有信息量的side information。当比较GES和EGES时,我们可以看到,在Amazon上的效果收益比在Taobao上的要大。这可能归功于Taobao的效果已经非常好了,比如:0.97.因而,EGES的提升不显著。在Amazon dataset上,EGES在AUC上的效果要好于GES。基于这些结果,我们可以观察到合并side information对于graph embedding非常有效,准确率可以通过对多个side information的mebeddings进行加权聚合而提升。

图4 2017年11月连续7天内不同方法的在线CTR

3.2 在线A/B test

我们在一个A/B testing框架下进行在线实验。实验的目标是在Taobao APP主页上的CTR。我们实现了上述的graph embedding方法,接着为每个item生成多个相似的items作为推荐候选。最终在Taobao主页(见图1)上的推荐结果,由基于一个DNN模型的ranking引擎生成。在实验中,我们在ranking上使用相同的方法对候选排序。如上所述,相似items的质量直接影响着推荐结果。因而,推荐效果(例如:CTR)可以受matching阶段不同的方法而影响。我们在A/B test框架上部署了4个方法。并对2017年11月中的7天的结果进行展示(如图4)。注意,“Base”表示一个item-based CF的方法,在graph embedding方法部署之前,它被广泛用于淘宝上。它会根据item的共现以及用户投票权重,计算两个items间的相似度。该相似度可以很好地进行调参、并很适合淘宝电商。

从图4我们可以看到,EGES和GES在CTR上的效果要好于BGE、以及Base方法,这展示了在graph embedding上合并side information的效果。另外,Base的CTR要大于BGE。这意味着,经过良好调参的CF-based方法可以战胜简单的embedding方法,因为在实际中会大量使用人工经验的策略。另一方面,EGES会一直胜过GES,它在3.1节的离线实验中一致。这进一步演示了,side information的加权聚合要胜过平均聚合。

3.2 案例研究

在本节中,我们提出了一些在taobao的真实案例,来展示这些方法的效果。这些case会检查三个方面:

  • 1.通过EGES的embedding可视化
  • 2.冷启动items
  • 3.在EGES中的权重

3.3.1 可视化

在本部分,我们会将由EGES学到的items的embeddings进行可视化。我们使用由tensorflow提供的可视化工具。结果如图7所示。从图7(a),我们可以看到不同类目(categories)的鞋子会在不同的聚类中。这里一种颜色表示一个类目,比如:羽毛球,乒乓球,足球。它演示了学到的合并side information的embeddings的效果。例如,具有相似side information的items在embedding空间中应更接近。从图7(b)看到,我们进一步分析三种鞋子的embeddings:羽毛球,乒乓球,足球。在embedding空间中,羽毛球和乒乓球相互很接近,而足球更更远些。这可以被解释成:在中国,喜欢羽毛球的人很多也喜欢打乒乓球。然而,喜欢足球的人与喜欢户内运动(羽毛球和乒乓球)的人则相当不同。推荐羽毛球鞋给这些观看过乒乓球鞋的人效果要好于推足球鞋的。

3.3.2 冷启动items

图5: 冷启动item的相似items。展示了top4相似的items。注意:这里的”cat”表示category.

在本部分,我们展示了冷启动item的embeddings质量。对于在淘宝上刚更新的一个新item,不能马上在item graph中没法学到embedding,之前基于CF的方法也不能处理冷启动问题。然而,我们可以将一个冷启动item使用它的side information的average embeddings进行表示。接着,我们基于两个items的embeddings的点乘计算,从已经存在的items中检索最相似的items。结果如图5所示。我们可以看到,对于两个冷启动items来说,尽管缺失用户行为,但可以利用不同的side information来有效学到它们的embeddings,在top相似的items上。在图中,我们为每个相似的item注释上:连接到冷启动item上的side information的类型。我们可以看到,items的所属商店(shops)是用于衡量两个items相似度上非常重要的信息,它也会在下面部分使和每个side information的权重进行对齐。

图6: 不同items的不同side information的weights. 这里的”Item”表示一个item本身的embedding

3.3.3 在EGES中的权重

我们会为不同的items作不同类型side information权重可视化。每个在不同类目上的8个items会被选中,与这些items相关的所有side information的权重会从学到的weight matrix A中抽取。结果如图6所示,其中,每一行记录了一个item的结果。可以观察到许多注意点:

  • 1.不同items的weight分布很不同,它们会与我们的猜假一致,不同的side information对于最终的表示来说贡献是不同的。
  • 2.在所有items中,”Item”的权重,表示了item自身的embeddings,会一直大于其它的side information的权重。必须承认的是,一个item自身的embedding仍然是用户行为的主要源,其中side information提供了额外的提示来推断用户行为。
  • 3.除了”Item”外,”Shop”的权重会一直大于其它side information的权重。这与淘宝的用户行为相一致,也就是说,用户可能出于便利或更低价格因素,趋向于购买在相同店内的items。

图7: 随机选中的鞋子的一个集合的embedding可视化。item embeddings通过PCA被投影到一个2D平面上。不同颜色表示不同的categories。相同category中的Item被一起分组。

4.系统部署和操作

本节中介绍graph embedding方法在淘宝的实现和部署。首先给出对淘宝整个推荐平台的一个大体介绍,接着详述与embedding方法相关的模块。

图8: 淘宝推荐平台的架构

在图8中,我们展示了推荐平台的架构。该平台包含了两个子系统:online和offline。对于online子系统,主要组件是TPP(Taobao Personality Platform:淘宝个性化平台)和RSP(Ranking Service Platform: 排序服务平台)。一个典型的workflow如下所示:

  • 当用户加载淘宝移动APP时,TPP会抽取用户最新的信息,并从离线子系统中检索一个items候选集,它们会接着被fed进RSP。RSP会使用一个fine-tuned DNN模型对items候选集进行排序,接着返回相应的排序结果给TPP。
  • 当用户在淘宝内浏览时,它们的行为会被收集和存储成离线子系统中的日志。

offline子系统的workflow,包含了graph embedding的实现和部署,如下描述:

  • 包含用户行为的日志会被检索。item graph会基于用户行为进行构建。实际上,我们会选择最近三个月的日志。在生成基于session的用户行为序列之前,会对数据进行anti-spam。留下的日志包含了6000亿条目。item graph会根据2.2节的方法进行构建。
  • 为了运行我们的graph embedding方法,会采用两种实际方法:1) 整个graph划分成许多个sub-graphs,它们可以通过Taobao的ODPs(Open Data Processing Service)分布式平台进行处理。每个subgraph有将近5000w个节点。2)为了生成random walk序列,我们在ODPs中使用基于迭代的分布式图框架。通过random walk生成的序列总是将近1500亿
  • 为了实现该embedding算法,在我们的XTF平台上使用了100个GPU。在部署平台上,使用1500亿样本,在离线子系统中的所有模块,包含日志检索、anti-spam、item图构建、通过random walk生成序列、embedding、item-to-item相似度计算以及map生成,执行过程小于6个小时。这样,我们的推荐服务可以在非常短时间内响应用户最近行为。

参考

airbnb在KDD 2018上开放了它们的方法:《Real-time Personalization using Embeddings for Search Ranking at Airbnb》, 我们来看下:

介绍

在过去十年的搜索体系中(通常基于经典的IR),已经出现了许多机器学习技术,尤其是在搜索排序领域。

任何搜索算法的目标(objective)都依赖于自身的平台。其中,一些平台的目标是增加网站参与度(engagement:比如在搜索之后的新闻文章上的点击、消费),还有的目标是最大化转化率(conversions: 比如:在搜索后的商品或服务的购买),还有的目标是需要为双边市场主体(比如:购买者和零售商)优化搜索结果。这种双边市场会合成一个可行的商业模型。特别的,我们会从社交网络范式转移到一个关于不同供需类型参与者组成的网络中。工业界的示例有:住房(airbnb),出行共享(Uber, Lyft),在线电商(Etsy)等。为这种类型的市场进行内容发现和搜索排序,需要满足供需双方,从而保持增长和繁荣。

在Airbnb中,需要对主人(hosts)和客人(guests)进行最优化搜索,这意味着,给定一个输入query,它带有位置(location)和旅行日期(trip dates),我们必须为客人带有位置、价格、风格、评论等出现给客户排序高的listings,同时,它又能很好地匹配主人关于旅行日期(trip dates)和交付期(lead days)的偏好。也就是说,我们需要发现这样的listings:它可能因为差评、宠物、逗留时间、group size或其它因素而拒绝客户,并将这些listings排的序更低。为了达到该目的,我们会使用L2R进行重排序。特别的,我们会将该问题公式化成pairwise regression问题(正向:预订bookings,负向:拒绝rejections)。

由于客户通常会在预测前浏览多个搜索结构,例如:点击多个listing,并在它们的搜索session内联系多个主人,我们可以使用这些in-session信号(例如,点击(clicks)、与主人的联系(host contacts)等)进行实时个性化,目标是给用户展示与search session相似的多个listings。同时,我们可以使用负向信号(比如,高排名listings的跳过次数),从而展示给客人尽可能少的不喜欢列表。

3.方法

下面,我们引入了listing推荐、以及listing在搜索的中ranking。我们会描述两个不同的方法,例如:对于短期实时个性化的listing embeddings、以及用于长期个性化 user-type & listing-type embeddings。

3.1 Listing embeddings

假设,给定从N个用户中获取的S个点击sessions的一个集合S,其中每个session 被定义成:一个关于该用户点击的M个listing ids连续序列。当在两个连续的用户点击之间超过30分钟的时间间隔时,启动一个新的session。给定该数据集,目标是为每个唯一的listing 学习一个d维的real-valued表示: ,以使相似的listing在该embedding空间中更接近。

更正式的,该模型的目标函数是使用skip-gram模型,通过最大化搜索sessions的集合S的目标函数L来学习listing表示,L定义如下:

…(1)

从被点击的listing 的上下文邻居上观察一个listing 的概率,使用softmax定义:

…(2)

其中是关于listing l的输入和输出的向量表示,超参数m被定义成对于一个点击listing的forward looking和backward looking上下文长度,V被定义成在数据集中唯一listings的词汇表。从(1)和(2)中可以看到提出的方法会对listing点击序列建模时序上下文,其中具有相似上下文的listing,将具有相似的表示。

计算(1)中目标函数的梯度的时间,与词汇表size 成正比,对于大词汇表来说,通常有好几百万listing ids,是不可行的任务。做为替代,我们会使用negative-sampling方法,它能极大减小计算复杂度。Negative-sampling可以如下所述。我们会生成一个positive pairs (l, c)的集合,其中l表示点击的listings,c表示它的上下文,然后从整个词典V中随机抽取n个listings来组成negative pairs (l, c)的集合。优化的目标函数变为:

…(3)

其中要学的参数是:, . 优化通过随机梯度上升法(SGA)完成

将预订Listing看成全局上下文。 我们将点击session集合S划分为:

  • 1) 预订型sessions(booked sessions), 例如,点击sessions会以用户在某一listing上进行预订而结束
  • 2) 探索型session(exploratory session),例如,点击sessions最后不会以预订结束,用户仅仅只是浏览.

对于捕获上下文相似度的角度来说两者都有用,然而,预订型sessions可以被用于适配以下的最优化:在每个step上,我们不仅仅只预测邻居clicked listing,也会预测booked listing。这种适配可以通过将预测的listing作为全局上下文(global context)来完成,从而能总是被预测,不管是否在上下文窗口内部。因此,对于预订型sessions来说,embedding的更新规则变为:

…(4)

其中,是booked listing 的embedding。对于 探索型session来说,更新仍会由(3)的最优化进行管理。

图1

图1展示了listing embeddings是如何从预定型sessions中进行学习的,它会使用一个滑动窗口size=2n+1, 从第一个clicked listing到最后的booked listing滑动。在每一步,central listing 的embedding会被更新,以便它能预测context listing 的embedding、以及booked listing 的embedding。随着窗口滑入和滑出上下文集合,booked listing总是会作为全局上下文存在

自适应训练. 在线旅行预定网站的用户通常会在单个market(例如,他们想逗留的地理位置)内进行搜索。因此,会有较高的概率包含了相同market中的listings。在另一方面,归因于negative sampling,包含的大多数listings与包含的listings很大可能不会是相同的markets。在每一步,对于一个给定的central listing l,positive上下文几乎由与l相同market的listings所组成,而negative上下文几乎由与l不同market的listings组成。为了解决该问题,我们提议添加一个随机负样本集合,它从中心listing l的market上抽样得到:

…(5)

其中要学习的参数有:,

冷启动listing的embeddings. 每天都有新的listings被主人创建,并在Airbnb上提供出租。这时候,这些listings不会有一个embedding,因为他们在训练数据中没有对应的点击sessions。为了为这些新的listings创建embeddings,我们打算利用其它listings的embeddings。

在listing创建时,需要提供listing的信息,比如:位置,价格,listing type等。我们利用这些关于listing的meta-data来发现3个地理位置上接近的listings(在10公里内),这些listings具有embeddings,并且具有与新listing相同的listing-type,并与新listing属于相同的价格区间(比如:每晚20-25美刀)。接着,我们使用3个embeddings计算平均向量,来构成新的listing embedding。使用该技术,我们可以覆盖98%的新listings。

图2

表1:

表2

检查listing embeddings.。为了评估由embeddings所捕获的listings的特性,我们检查了d=32维的embeddings,它使用公式(5)在800w点击sessions上进行训练。首先,通过在学到的embeddings上执行k-means聚类,我们对地理相似度进行评估。图2展示了生成的在加州的100个聚类,证实相似位置的listing会聚在一起。我们发现这些聚类对于重新评估我们的travel markets的定义非常有用。接着,我们评估了来自洛杉矶的不同listing-type间(表1)、以及不同价格区间(表2)间的listings的平均cosine相似度。从这些表中可以观察到,相同type和相同价格区间间的cosine相似度,要比不同type和不同价格区间间的相似度要高很多。因此,我们可以下结论,两个listing特性在被学到的embeddings中可以很好地编码。

图3

有一些listing特性(比如价格)不需要学习,因为他们会直接从listing的meta-data中被抽取;而其它类型的listing特性(比如:房屋结构:architecture、装修风格:style、感受:feel),很难以listing features的形式进行抽取。为了评估这些特性是否由embeddings捕获,我们检查了在listing embedding空间中单一房屋结构的listings的k近邻。图3展示了这个case,对于左侧的一个单一architecture的listing来说,最相似的listings具有相同的style和architecture。为了能在listing embedding空间上进行快速和方便的探索,我们开发了一个内部的相似度探索工具,如图4所示。

图4

该工具的演示在https://youtu.be/1kJSAG91TrI, 展示了可以发现相同architecture(包括:houseboats, treehouses, castles, chalets, beachfront apartments)的相似listings。

3.2 User-type & Listing-type embeddings

在3.1节描述的是Listing embeddings。它使用clicked sessions进行训练,能很好地发现相同market间的listings相似度。同样的,他们更适合短期(short-term)、session内(insession)、个性化的需求,它们的目标是给用户展示与在搜索session期间点击的listing相似的listings。

然而,除了in-session personalization,(它基于在相同session内发生的信号构建),基于用户长期历史的信号对于个性化搜索来说很有用。例如,给定一个用户,他当前在搜索洛杉矶内的一个listing,过去他在纽约、伦敦预定过,给他推荐之前预定过的listings相似的listings是很有用的。

当在由点击训练得到的listing embeddings中捕获一些cross-market相似度时,学习这种cross-market相似度一个原则性方法是,从由listings构成的sessions中学习。特别的,假设,我们给定一个从N个用户中获取的booking sessions的集合,其中每个booking session 被定义成:由用户j按预定(booking)的时间顺序排列的一个listings序列。为了使用该类型数据来为每个listing_id,学习embeddings ,会有以下多方面挑战:

  • 1.booking sessions数据比click sessions数据S要小很多,因为预定是低频事件。
  • 2.许多用户在过去只预定单个listing,我们不能从session length=1中进行学习
  • 3.为了上下文信息中的任意实体学习一个有意义的embeddings,至少需要该实体出现5-10次,然而在平台中的许多listing_ids会低于5-10次。
  • 4.最后,由同用户的两个连续预定可能会有很长时间的间隔,这时候,用户偏好( 比如:价格点)可能会随职业发展而变化。

为了解决这些非常常见的问题,我们提出了在listing_type级别学习embeddings,而非listing_id级别。给定一个特定listing_id的meta-data,比如:位置,价格,listing-type,空间,床数等,我们使用一个在表3中定义的基于规则的映射,来决定listing_type。

表3

**例如,一个来自US的Entire Home listing(lt1),它是一个二人间(c2),1床(b1),一个卧室(bd2) & 1个浴室(bt2),每晚平均价格为60.8美刀(pn3),每晚每个客人的平均价格为29.3美刀(pg3),5个评价(r3),所有均5星好评(5s4),100%的新客接受率(nu3),可以映射为:listing_type = U S_lt1_pn3_pg3_r3_5s4_c2_b1_bd2_bt2_nu3. **分桶以一个数据驱动的方式决定,在每个listing_type分桶中最大化覆盖。从listing_id到一个 listing_type的映射是一个多对一的映射,这意味着许多listings会被映射到相同的listing_type。

表4:

为了解释用户随时间变化的偏好,我们提出在与listing_type embedding相同的向量空间中学习user_type embeddings。user_type使用一个与listings相似的过程来决定,例如,利用关于user和它之前预订记录的metadata,如表4定义。例如,对于一个用户,他来自San Francisco(SF)、带有MacBook笔记本(dt1)、说英文(lg1)、具有用户照片资料(pp1)、83.4%平均5星率(l5s3)、他在过去有3个预订(nb1)、其中关于订单(booked listings)的平均消费统计为:52.52美刀 (每晚平均价格: Price Per Night), 31.85美刀 (每晚单客户平均价格:Price Per Night Per Guest), 2.33(Capacity), 8.24(平均浏览数:Reviews)、76.1%(5星好评单:Listing 5 star rating)。对于该用户所生成的user_type是:SF_lg1_dt1_fp1_pp1_nb1_ppn2_ppg3_c2_nr3_l5s3_g5s3. 当为训练embeddings生成booking sessions时,我们会一直计算user_type直到最近的预定。对于那些首次做出预定的user_type的用户,可以基于表4的第5行进行计算,因为预测时我们没有关于过去预定的先验信息。这很便利,因为对于为user_types的embeddings,它基于前5行,可以用于对登出用户或者没有过往预定记录的新用户进行冷启动个性化

训练过程. 为了学习在相同向量空间中的user_type和listing_type的embeddings,我们将user_type插入到booking sessions中。特别的,我们形成了一个集合,它由N个用户的个booking sessions组成, 其中每个session 被定义成一个关于booking事件的序列,例如:按时间顺序排列的(user_type, listing_type)元组。注意,每个session由相同user_id的bookings组成,然而,对于单个user_id来说,他们的user_types可以随时间变化,这一点与下述情况相似:相同listing的listing_types会随着他们接受越来越多的bookings按时间变化。

目标函数与(3)相似,会替换listing l,中心项需要使用或者进行更新,取决于在滑动窗口中捕获的项。例如,为了更新中心项,我们使用:

…(6)

其中包含了来自最近用户历史的user_type和listing_type,特别是与中心项接近的用户预定记录,其中包含了使用随机的user_type或listing_type实例作为负例。相似的,如果中心项是一个,我们可以对下式最优化:

…(7)

图5a展示了一个该模型的图形表示,其中,中心项表示用于执行(6)中的更新。

图5

由于定义中的booking sessions几乎包含了来自不同markets的listings,没有必要从相同market中抽样额外的负样本作为booked listing。

拒绝订单(rejection)的显式负样本。不同于点击只影响guest端的偏好,bookings也会影响host端的偏好,也存在着来自host的一个显式反馈,形式表现为:接受guest的请求进行预定,或者拒绝guest的预订请求。对于host来说,拒绝的一些原因可能是:客户较差的guest star ratings、用户资料不完整或空白、没有资料图等等。这些特性有一部分存在表4中的user_type定义中。

来自主人的拒绝(Host rejections),可以在训练期间被用来编码主人(host)在向量空间中的偏好。合并这些拒绝信号的目的是:一些listing_types比没有预定记录的、不完整的资料、以及较低的评星率的user_types敏感度更小。我们希望,这些listing_types和user_types在向量空间的embedding更接近,这样基于embedding相似度的推荐可以减小拒绝率,最大化预订机会

我们对rejections看成是显式负样本,以如下方式公式化。除了集合,我们会生成一个集合,它由涉及到rejection事件的user_type和listing_type的pairs()组成。如图5b所示,我们特别关注,对于同一用户,当在对于另一个listing的成功预定(通过一个正号标记)之后主人拒绝(通过一个负号-标记)。新的目标函数可以为:

更新一个的中心item:

…(8)

更新一个的中心item:

…(9)

表5

对于所有user_types和listing_types所学到的embeddings,我们可以根据用户当前的user_type embedding和listing_type embedding,基于cosine相似度给用户推荐最相关的listings。例如,表5中,我们展示了cosine相似度:

user_type = SF_lg1_dt1_fp1_pp1_nb3_ppn5_ppg5_c4_nr3_l5s3_g5s3, 该用户通常会预定高质量、宽敞、好评率高、并且在美国有多个不同listing_types的listings。可以观察到,listing_types最匹配这些用户的偏好,例如,整租,好评多,大于平均价,具有较高cosine相似度;而其它不匹配用户偏好的,例如:空间少,低价,好评少,具有较低cosine相似度。

4.实验

4.2 Listing Embeddings的离线评估

为了能快速根据不同最优化函数、训练数据构造、超参数、等做出快速决策,我们需要一种方式来快速对比不同的embeddings。

一种对训练出的embedding进行评估的方法是,基于最近用户点击行为,测试在用户推荐列表中将要预测的效果好坏。更特别的,假设我们给定了最常见的clicked listing和需要被排序的候选listing,它包含了用户最终预定的listing。通过计算在clicked listing和candidate listings间的cosine相似度,我们可以对候选进行排序,并观察到booked listing的排序位置。

f6.png

图6

为了评估,我们使用一个大数目的这种search、click和booking事件,其中rankings通过我们的Search Ranking模型进行分派。在图6中,我们展示了离线评估的结果,我们比较了d=32的多个版本embeddings,并认为他们基于点击来对booked listing进行排序。booked listing的rankings对于每个产生预定的点击进行平均,在预定之前的17次点击,转到在预定之前的最后一次点击(Last click)。越低值意味着越高的ranking。我们要对比的embedding versions有:

  • d32: 它使用(3)进行训练
  • d32 book: 它使用bookings做为全局上下文 (4)
  • d32 book + neg: 它使用bookings做为全局上下文,并对于相同的market采用展式负样本(5)

可以观察到,Search Ranking模型会随着它使用记忆型特征(memorization features)而获得更好更多的点击。可以观查到基于embedding相似度的re-ranking listings是有用的,特别是在search漏斗的早期阶段。最后,我们可以断定:d32 book + neg的效果要好于其它两者。相同类型的图可以被用于对其它因素:(超参数、数据构建)做出决策。

参考

阿里在KDD 2018上开放了它们的方法:《Learning Tree-based Deep Model for Recommender Systems》, 我们来看下:

介绍

在推荐系统设计中,为每个用户从整个语料(corpus)集中预测最好的候选集合,存在许多挑战。在海量corpus的系统中,一些推荐算法会失败。与corpus size成线性预测复杂度关系是不可接受的。部署这样的大规模推荐系统,预测每个用户所需要的计算量是受限的。除了精准度外,推荐items的新颖度(novelty)也应在用户体验上考虑。推荐结果中如果包含许多与用户的历史行为的同质items是不可接受的。

在处理海量corpus时,为了减少计算量,基于内存的CF方法在工业界常被广泛使用。作为CF家族的代表方法,item-based CF可以从非常大的corpus进行推荐,只需要很少的计算量,具体决取于预计算的item pairs间的相似度,以及使用用户历史行为作为触发器(triggers)来召回多个相似items。然而,这限制了候选集的范围,例如,只有与triggers相似的items可以被推荐。这阻止了推荐系统跳出它们的历史行为来探索潜在的其它用户兴趣,限制了召回结果的accuracy。实际上,推荐的新颖性(novelty)也是很重要的。另一个减小计算量的方法是,进行粗粒度推荐(coarsegrained recommendation)。例如,系统为用户推荐少量的item类目,并根据它选择所有相应的items,接着进行一个ranking stage。然而,对于大语料,计算问题仍然没解决。如果类目数很大,类目推荐本身也会遇到计算瓶颈。如果不这样做,一些类目将不可避免地包含过多items,使得后续的ranking计算行不通。另外,使用的类目通常不是为推荐问题专门设计的,它也会对推荐的accuracy有害。

在推荐系统的相关文献中,model-based的方法是一个很活跃的话题。像矩阵分解(MF)这样的模型,尝试将pairwise user-item偏好分解成user factors和item factors,接着为每个用户推荐它最喜欢的items。因子分解机(FM)进一步提出了一个统一模型,对于任意类型的输入数据,可以模仿不同的因子分解模型。在一些真实场景中,没有显式偏好,只有隐式用户反馈(例如:像点击 or 购买 这样的用户行为),Bayesian personalized ranking【29】给出了一个求解思路,它会将三元组中的偏好按局部顺序进行公式化,并将它应用到MF模型中。工业界,YouTube使用DNN来学习user embedding和item embeddings,其中,两种类型的embeddings会分别由其相对应的特征进行生成。在上述所有类型的方法中,user-item pair的偏好可以被公式化成,user vector表示与item vector表示间的内积(inner product)。预测阶段等同于检索用户向量在内积空间中的最近邻。对于向量搜索问题,像hashing或quantization[18]用于近似kNN搜索来确保检索的高效性。

然而,在user vector representations和item vector representations间的内积交互形式,严重限制了模型的能力。存在许多类型的其它更具表现力的交互形式,例如,用户历史行为和候选items间的cross-product特征在CTR预估上广泛被使用。最近的工作【13】提出了一种neural CF方法,它使用一个神经网络来替代内积,被用于建模user和item向量表示间的交互。该工作的试验结果表明,一个多层前馈神经网络,比固定内积方法的效果要好。DIN[34]指出,用户兴趣是分散的,一种基于attention机制的网络结构可以根据不同候选items生成不同的user vectors。除了上述工作外,其它像product NN[27]的方法也表明高级NN的效果。然而,这些类型的模型与user vector和item vector间的内积方法(利用高效的kNN搜索)不相一致,在大规模推荐系统中,它们不能被用于召回候选集。为了克服计算屏障,在大规模推荐中使用高级NN是个问题

为了解决上述挑战,我们提出了一个新的TDM(tree-based deep recommendation model). 树和基于树的方法在多分类问题中被广泛研究,其中,tree通常被用于划分样本(sample)/标签(label)空间,来减小计算代价。然而,研究者们涉足于推荐系统环境中使用树结构做为索引进行检索。实际上,层次化结构(hierarchical structure)的信息存在于许多领域。例如,在电商中,iPhone是细粒度item,而smartphone是粗粒度概念,iPhone属于smartphone。TDM方法会使用信息的层级,将推荐问题转化成一系列的层次化分类问题(hierarchical classification problems)。从简到难解决该问题,TDM可以同时提升accuracy和efficiency。该paper的主要贡献如下:

  • TDM是第一个这样的方法,使得在大规模语料中生成推荐的任意高级模型成为可能。受益于层次化树搜索,TDM的计算量只与corpus size成log关系。
  • TDM可以从大型数料中发现更精准的显著并有效的推荐结果,由于整个语料是探索式的,更有效的深度模型也可以帮助发现潜在兴趣。
  • 除了更高级的模型外,TDM也通过层次化搜索来提升推荐accuracy,它可以将一个大问题划分成更小的问题分而治之。
  • 作为索引的一种,为了更高效地检索,树结构可以朝着items和concepts的最优层次结构被学到,它可以帮助模型训练。我们使用一个tree learning方法,它可以对神经网络和树结构进行joint training。
  • 我们在两个大规模数据集上做了大量实验,结果展示TDM的效果要比现有方法好很多。

值得一提的是,tree-based方法也在语言模型中使用(hirearchical softmax),但它与TDM在思想和公式上都不同。在对下一个词的预测问题上,常用的softmax必须计算归一化项(normalization term)来获取任意单个词的概率,它非常耗时。Hierarchical softmax使用tree结构,下一个词的概率就被转换成沿着该tree path的节点概率乘积。这样的公式将下一个词概率的计算复杂度减小到关于语料size的log级别。然而,在推荐问题上,为这些最喜爱items搜索整个语料的目标,是一个检索问题。在hierarchical softmax tree中,父节点的最优化不能保证:最优的低级别节点在它们的子节点上(descendants),并且所有items仍需要被转换成发现最优解。为了解决该检索问题,我们提出了一个类似最大堆的树公式(max-heap like tree),并引入了DNN来建模该树,它为大规模推荐提供了一个有效的方法。以下部分展示了公式的不同之处,它在性能上的优越性。另外,hierarchical softmax采用了单层hidden layer网络来解决一个特定的NLP问题,而我们提出的TDM则实际上可使用任意网络结构。

提出的tree-based模型是一个通用解法,适用于所有类型的在线内容提供商。

2.系统架构

图1 Taobao展示广告(display advertising)推荐系统的系统架构

在本节,图1介绍了Taobao 展示广告推荐系统。在接受到一个用户的PV请求时,系统使用用户特征、上下文特征、以及item特征作为输入,会在matching server中从整个语料中(上百万)来生成一个相对较小的候选集合(通常百级别)。tree-based推荐模型在该stage发挥作用,并将候选集的size缩减了好多阶

有了数百个候选items,实时预测server会使用更昂贵但也更耗时的模型[11,34]来预测预测像CTR或转化率之类的指标。在通过策略排完序后,一些items会最终曝光给用户。

如上所述,提出的推荐模型的目标是,构建一个含数百个items的候选集。该stage是必须的,也很难。用户在生成的候选上是否感兴趣,给出了曝光质量的一个上界。然而,从整个语料中有效抽取候选是个难题。

3.tree-based Deep模型

在本部分,我们首先介绍在我们的tree-based模型中所使用的树结构。然后,介绍hierarchical softmax来展示为什么该公式不适合推荐。最后,我们给出了一个新的类max-heap tree公式,并展示了如何训练该tree-based模型。接着,引入DNN结构。最后,我们展示了如何构建和学习在tree-based模型中构建和学习该tree。

图2 tree-based deep模型架构。用户行为根据timestamp被划分成不同的时间窗口。在每个时间窗口中,item embeddings被平均加权,权重来自activation units。每个时间窗口的output沿着候选节点的embedding,被拼接成神经网络的输入。在经过三个带PReLU activation和batch normalization的fully-connected layers之后,使用一个二分类softmax来输入probability:用户是否对候选节点感兴趣。每个item和它对应的叶子节点共享相同的embedding。所有embeddings都是随机初始化的。

3.1 推荐所用树

一棵推荐树(recommendation tree)由一个包含N个节点的集合构成,其中,表示个孤立的非叶子节点或叶子节点。在N中的每个节点,除了根节点外,具有一个父节点、以及特定数目的子节点。特别的,在语料C中的每个item ,仅仅只对应于树中的一个叶子节点,这些非叶子节点是粗粒度概率。不失一般性,我们假设节点是根节点。一个关于树的示例如图2右下角所示,在其中,每个圆表示一个节点,节点的数字是在树中的索引。该树总共具有8个叶子节点,每个都对应于语料中的一个item。值得一提的是,给定的示例是一个完全二叉树,我们不会在我们的模型中强制完全二叉。

3.2 相关工作

有了树结构,我们首先引入hierachical softmax来帮助区分TDM。在hierachical softmax中,树中的每个叶子节点n,从根节点出发到该节点具有唯一编码。例如,如果我们假定:左分枝为1,右分枝为0, 那么图2中树的编码为110, 的编码为000. 注意,是在第j层的节点n的编码。在hierachical softmax的公式中,下个词的概率通过上下文给定:

…(1)

其中w是叶子节点n的编码,是在第j层的n的父节点。

这种方式下,hierarchical softmax可以避免softmax中的归一化项(语料中每个词都要遍历一次),从而解决概率计算问题。然而,为了发现最可能的叶子,该模型仍会遍历整个语料。从上到下沿着树路径(tree path)遍历每个层中最可能的节点,不能保证成功检索到最优的叶子。因此,hierarchical softmax的公式不适合大规模检索问题。另外,根据公式1, 树中的每个叶子节点以二分类的方式训练,来在两个子节点间做区分。但是如果两个节点是树中的邻居,它们很可能很相似。在推荐场景中,很可能该用户对两个子节点都感兴趣。hierarchical softmax主要会在最优解和次优解上建模,从全局上看会丢掉识别能力。如果贪婪定向搜索(greedy beam search)被用于检索这些最可能的叶子节点,一旦在树的上层做出坏的决策,模型在发现更好结果上会失败。YouTube的工作[7]也报告了他们已经尝试用hierachical softmax来学习user embeddings和item embeddings,而它比sampled-softmax[16]的方式效果要差

hierachical softmax的公式不适合于大规模推荐,我们提出了一种新的树模型。

3.3 Tree-based模型公式

为了解决top-k 最喜欢items检索的效率问题,我们提出了一个最大堆树(max-heap like tree)的概率公式。最大堆树是一个树结构,其中在第j层中的非叶子节点n,对于每个用户u来说,满足以下公式:

…(2)

其中是真实概率(ground truth probability),用户u对n感兴趣。是第j层指定layer的归一化项,用来确保在level上的概率和等于1。等式(2)表明,一个父节点的真实偏好等于它的子节点的最大偏好,除以归一化项。注意,我们轻微修改该概率,让u表示一个特定的用户状态(user state)。换句话说,一旦该用户有新行为,会从一个特定用户状态u转移到另一个状态u’。

我们的目标是,寻找最大偏好概率的k个叶子节点。假设,我们具有在树中每个节点n的真实概率,我们可以使用最大偏好概率layer-wise的方式来检索k个节点,只有每一层的top k的子节点需要被探索。在这种方式下,top k个叶子节点可以被最终检索到。实际上,我们不需要知道在上述过程中每棵树节点的实际真实概率。我们需要的是每一层的概率顺序,来帮助发现在该层级上的top k个节点。基于这个观察,我们使用用户的隐式反馈数据和神经网络来训练每个层级(level)的识别器(discriminater),它可以告诉偏好概率的顺序。

假设用户u具有一个与叶子节点的交互,即,是一个u的正样本节点。这意味着:,其中,m是叶子层级,是任意其它叶子节点。在任意层级j中,表示在级别j上的的父节点。根据等式(2)的公式,我们假设:,其中是除了外在层级j上的任意节点。在上述分析的基础中,我们可以使用negative sampling来训练每个层级的顺序判别器(order discriminator)。细节上,与u有交互的叶子节点,它的父节点为u构成了在每个层级中的正样本集合。在每个层级上,随机选择若干负样本(除去正样本),构建了负样本集合。在图2中,绿色和红色节点给出了抽样示例。假设,给定一个用户和它的状态,目标节点是。接着,的父节点是正样本,这些在每个层级上随机抽取的红色节点,是负样本。这些样本接着被feed给二分类概率模型来获取层级顺序判别器。我们使用一个全局DNN二分类模型,为所有层级使用不同输入来训练顺序判断器。可以使用高级的神经网络来提升模型能力。

假设是关于u的正负样本集合。似然函数为:

…(3)

其中是给定u的节点n的预测label。是采用用户状态u以及抽样节点n作为输入时二分类模型的输出。相应的loss函数为:

…(4)

其中是给定u的节点n的ground truth label。3.4节将讲述如何根据loss函数来训练模型。

注意,提出的抽样方法与hierarchical softmax相当不同。对比在hierarchical softmax中使用的方法,它会让模型混淆最优和次优结果,我们为每个正节点的同层级随机选择负样本。这种方法让每一层的判别器是一个内部层级全局判别器(intra-level global)。每个层级的全局判别器可以更独立的做出精准决策,不需要依赖于上层决策的好坏。全局判别能力对于hierarchical推荐方法非常重要。它可以确保:即使模型做出坏的决策,让低质量节点会漏进到上层中的候选集,通过该模型在下层也能选中那些相对更好的节点,而非非常差的节点。

算法1

给定一棵推荐树、以及一个最优模型,详细的hierarchical预测算法在算法1中描述。检索过程是layer-wise和top-down的。假设,期望的候选item数是k。对于语料C,它具有size=,在最多个节点上遍历,可以获取在一个完全二叉树上最终的推荐集合。节点数需要在一个关于log(corpus size)级别上遍历,这样可以做出高级的二分概率模型。

我们提出的TDM方法不仅减少了预测时的计算量,也潜在地提升了推荐质量(对比起在所有叶子节点上的brute-force search)。如果没有这棵树,训练一个模型来直接发现最优items是一个很难的问题,归因于corpus size。使用树的层次化(tree hierarchy),大规模推荐问题可以被划分成许多更小的问题。在树的高层中只存在很少节点,判别问题更容易些。由高层上做出的决策可以重新定义候选集,它可以帮助更低层级做出更好的决策。第5.4节中的实验结果,将展示提出的hierarchical retrieval方法的效果要好于brute-force search。

3.4 Deep模型

下面,我们引入deep模型。整个模型如图2所示。受ctr工作的启发[34],我们为树中的每个节点学习低维embeddings,并使用attention模块来为相关行为进行软搜索(softly searching)以求更用的user representation。为了利用包含timestamp信息的用户行为,我们设计了block-wise input layer来区别在不同时间窗口的行为。历史行为可以被划分成沿timeline的不同时间窗,在每个时间窗口中的item embeddings是平均加权的。Attention模块和下面介绍的网络可以极大增强模型能力,同时可以在不能够以内积形式表示的候选集上做出用户偏好。

树节点的embeddings和树结构本身是模型的一部分。为了最小化公式(4)的Loss,抽样节点和相应的特征可以被用于训练该网络。注意,我们只在图2中出于简洁性,展示了用户行为特征的使用,而其它像user profile的features或contextual feature,可以被使用,并无大碍。

3.5 树的构建和学习

推荐树是tree-based deep推荐模型的一个基础部件。不同于multiclass和multi-label分类任务,其中tree被用于划分样本或labels,我们的推荐树会对items进行索引以方便检索。在hierarchical softmax中,词的层次结构可以根据WordNet的专家知识构建。在推荐场景,并不是每个语料可以提供特有的专家知识。一个直觉上的选择是,使用hierarchical聚类方法,基于数据集中item共现或相似度来构建树。但聚类树可能相当不均衡,不利于训练和检索。给定pairwise item similarity,paper[2]的算法给出了一种方法来通过谱聚类将items递归分割成子集。然而,对于大规模语料来说谱聚类的扩展性不够(复杂度随corpus size成三次方增长)。在本节中,我们主要关注合理和可行的树构建和学习方法。

树的初始化。由于我们假设该树表示了用户兴趣的层次结构化(hierarchical)信息,很自然地以在相近位置组织相似items的方式来构建树。假设,在许多领域中类目信息是广泛提供的,我们直觉上提出一个方法来利用item的类目信息来构建初始的树。不失一般性,我们在本节中使用二叉树。首先,我们会对所有类目随机排序,以一个intra-category的随机顺序将属于相同类目的items放置在一起。如果一个item属于多个类目,出于唯一性,item被随机分配给其中之一。这种方式下,我们给出了一个ranked items的列表。第二,这些ranked items被递归均分为两个相同的部分,直到当前集合有且仅包含一个item,它可以自顶向底构建一个近似完全二叉树。上述类型的category-based初始化,可以比完全随机树获取更好的hierarchy。

树的学习。作为模型的一部分,每棵叶子节点的embedding可以在模型训练之后被学习得到。接着,我们使用学到的叶子节点的embedding向量来聚类一棵新的树。考虑到corpus size,我们使用k-means聚类算法。在每个step,items会根据它们的embedding vectors被聚类成两个子集。注意,两个子集会被调整成相等以得到一个更平衡的树。当只剩下一个item时,递归过程停止,结果产生一棵二叉树。在我们的实验中,使用单台机器,当语料size为400w时,它会花费一个小时来构建这样的一个聚类树。第5节的实验结果表明所给树学习算法有效率。

4.online serving

图3展示了提出方法的online serving系统。Input feature assembling和item retrieval被划分成两个异步的stages。每个用户行为(包含点击、购买以及加入购物车),会触发realtime feature server组装新的input features。一旦接收到PV请求时,user targeting server会使用预组装的features来从该树中检索候选。如算法1所述,检索是layer-wise的,训练的神经网络被用于计算:给定input features,一个节点是否被喜欢的概率。

图3

5.实验研究

本部分会研究tree-based模型的效果。实验结果在MovieLens-20M和Taobao advertising dataset(称为UserBehavior数据集)。

  • MovieLens-20M: 包含了user-movie评分数据,带有timestamps。我们会处理隐式反馈问题,评分被二值化:4分以上为1. 另外,只有观看了至少10部电影的用户才会被保留。为了创建训练集、测试集、验证集,我们随机抽样了1000个用户做测试集,另1000用户做验证集,其余用户用于训练集。对于测试集和验证集,前一半的沿timeline的user-movie观看记录被看成是用于预测后一半的已知行为。
  • UserBehavior: 该数据集是taobao用户行为数据集的子集。我们随机选取了100w具有点击、购买、加入购物车、喜欢收藏的行为,在2017年11.25-12.03间。数据的组织与MovieLens非常相似,例如,一个user-item行为,包含了user ID, item ID, item category ID, 行为类型和timestamp。和MovieLens-20类似,只有至少有10个行为的用户会保留。10000用户会被机选中做为测试集,另一随机选中的10000用户是验证集。Item categories从taobao当前的商品类目的最底层类目得到。表1是两个数据集的主要统计:

表1

5.2 Metrics和比较

为了评估不同方法效果,我们使用Precision@M, Recall@M和F-Measure@M。

  • FM:由xLean项目提供的FM
  • BPR-MF: 由[10]提供的BPR-MF
  • Item-CF: Item-based CF,由Alibaba自己实现
  • Youtube product-DNN: Youtube的方法。训练时使用Sampled-softmax,在Alibaba深度学习平台上实现。预测时在内积空间中采用Exact kNN search。
  • TDM attention-DNN(tree-based模型,使用attention网络),如图2所示。树的初始化由3.5节所示,在实验期间保持不变。实现在github上

对于FM, BPR-MF和item-CF,我们会基于验证集调参,例如:在FM和BPR-MF的因子数和迭代数,在item-CF中的邻居数。FM和BPR-MF需要用户在测试集和验证集上也具有在训练集中的反馈。因些,我们会根据timeline添加在测试集和验证集中前一半的user-item交互,到训练集中。对于Youtube product-DNN和TDM attention-DNN,节点的embeddings的维度设置为25, 因为在我们的实验中一个更高维度并不会带来很大的效果提升。hidden unit数目分别设置为128, 64, 64. 根据timestamp,用户行为被划分成10个time windows。在Youtube product-DNN和TDM attention-DNN中,对于每个隐式反馈,我们为MovieLens-20M随机选择100个负样本, 为UserBehavior随机选择600个负样本。注意,TDM的负样本数据是所有层的求和。我们会为接近叶子的层级抽样更多的负样本。

5.3 结果比较

结果如表2所示:

表2

为了验证新颖性(novelty),一种常用的方法是:过滤掉在推荐集中的交互项【8,20】,例如,只有这些新的items可以被最后推荐。因而,在一个完全新的结果集上比较accuracy更重要。在该实验中,结果集的size可以被补足到M,如果在过滤后size小于M。在过滤完交互items后,表2的底部展示了TDM的attention-DNN效果要好于所有baseline一大截。

为了进一步评估不同方法的能力,我们通过将这些交互类目从结果中排除做实验。每个方法可以补足以满足size需求。确实,category-level novelty在Taobao推荐系统中是最重要的新颖性(novelty)指标。我们希望减小与用户交互项的推荐数目。由于MovieLens-20M只有20个类目,该实验只包含了UserBehavior数据集,结果如表3所示。以recall指标为例,我们观察到item-CF的recall只有1.06%,由于它的推荐结果可以有一半跳出用户的历史行为。Youtube product-DNN对比item-CF会获取更好的结果,由于它从整个语料探索用户的潜在兴趣。而TDM attention-DNN在recall上的效果比Youtube的inner product方式要好34.3%。这种巨大的提升对于推荐系统来说非常有意义,它证明了更高级的模型对于推荐问题来说有巨大的不同。

表3

5.4 经验分析

TDM的变种。为了自身比较,也评估了一些变种:

  • TDM product-DNN:
  • TDM DNN:
  • TDM attention-DNN-HS:

实验结果如表2中虚线以下所示。TDM attention-DNN到TDM DNN的比较,在UserBehavior数据集上有10% recall提升,attention模块会有明显的提升。TDM product-DNN效果比TDM DNN、TDM attention-DNN要差,因为inner product的方法比神经网络的交互形式要差些。这些结果表明:在TDM中引入的高级模型可以极大提升推荐的效果。注意,对比起TDM attention-DNN,TDM attention-DNN-HS会获取更差的结果。因为hierarchical softmax的公式不能很好适应推荐问题。

树的角色。Tree是TDM的关键组件。它不仅扮演着检索时的索引角色,也会以从粗到细的层级结构形式来建模语料。第3.3节中提到的,直接做出细粒度推荐要比以层级结构方式更难。我们通过实验证明了这个观点。图4展示了layer-wise Recall@200的hierarchical tree search(算法1)和brute-force search。该实验在UserBehavior数据集上使用TDM product-DNN模型,因为它是唯一可以采用brute-force search的变种。在高层级上(8-9),burte-force search的效果只比tree search要稍微好一点点,因为节点数很小。一旦在一个层级上的节点数增长了,对比起burte-force, search,tree search会获取更好的recall结果,因为tree search可以排除那些在高层级上的低质量结果,它可以减少在低层级上的问题的难度。该结果表明,在树结果中包含的hierarchy信息,可以帮助提升推荐的准确性。

图4

tree learning。在3.5节中,我们提出了树的初始化和学习算法。表4给出了在initial tree和learnt tree间的比较结果。从结果看,我们可以发现,使用learnt tree结构的训练模型可以极大提升intial tree。例如,learnt tree的recall指标从4.15%到4.82%,对比起在过滤交互类目的实验中的initial tree,它使用Youtube product-DNN: 3.09%, item-CF: 1.06%。为了进一步比较这两个tree,我们展示了TDM attention-DNN的test loss和recall曲线,训练迭代如图5所示。从图5(a)中,我们可以看到learnt tree结构的test loss变小。图5(a)和5(b)表明,模型会收敛到较好的结果。上述结果表明,tree-learning算法可以提升items的hierarchy,从而进一步提升训练和预测。

图5

5.5 Online效果

我们在taobao效果广告平台的真实流量上评估了提出的TDM的方法。实验在taobao app主页上的猜你喜欢(Guess What You Like)中进行实验。用于评估效果的两个指标是:CTR和RPM(每1000的回报率)。详细如下:

…(8)

在我们的广告系统中,广告主会对一些给定的ad clusters竞价。有将近1400w的clusters,每个ad cluster包含了上百或上千条相似的ads。该验验以ad cluster的粒度开展,以保持与现有系统的一致。比较方法有:LR作为baseline。由于系统中有许多stages,部署TDM online方法是一个巨大的项目,涉及到整个系统。我们完成了第一个TDM DNN版本,并评估了online流量。每个分桶具有5%的在线流量。值得一提的是,有许多在线同时运行推荐的方法。他们从不同的视角,产生的结果进行合并进入到下一stages。TDM只会替换它们中最有效的,保持其它模块不变。带有TDM的测试分桶的平均metric提升率,如表5所示。

如表5所示,TDM方法的CTR提升了2.1%。这项提升表明提出的方法可以为用户召回更多精准的结果。另一方法,RPM的metric增加了6.4%,这意味着TDM的方法也可以为taobao广告平台带来更多回报。

预测效果。TDM使得,在大规模推荐中与user和items交叉高级神经网络变得可行,它打开了一个全新视角。值得一提的是,尽管高级神经网络在inferring时需要更多的计算,但整个预测过程的复杂度不会大于,其中,k是所需结果的size,是corpus size,t是网络中单个feed-forward pass的复杂度。该复杂度的上界在当前CPU/GPU硬件环境下是可接受的,在单个检索中,用户侧特征可以跨不同的节点共享,一些计算可以根据模型设计被共享。在Taobao展示广告系统中,它实际上会采用TDM DNN模型,平均一次推荐需要6ms。这样的运行时间比接下来的ctr预测模型要短,不会是系统瓶颈。

6.结论

参考

阿里盒马团队在KDD 2018上开放了它们的方法:《Learning and Transferring IDs Representation in E-commerce》, 这个方法也很简单,我们来看下paper的主要内容部分:

3.4 联合嵌入Attribute IDs

通过探索在item ID和它的attribute IDs间的结构连接,我们提出了一个hirerarchical embedding模型来联合学习item ID和attribute IDs的低维表示。模型结构如图4所示,其中item ID是核心的交互单元,它与attibute IDs间通过虚线连接。

1.png

图4

首先,item IDs的共现也隐含了对应attribute IDs间的共现,它通过图4的实心键头表示。假设存在K个类型的IDs,并使 ,其中等于的item ID,是product ID,是store ID等。我们学习目标替换成:

…(7)

其中,以及是分别对应于类型(type)为k的context和target representations。对于类型k,是它的embedding vectors的维度,是它的字典size。注意,不同类型的IDs可以被嵌入到不同的维度上。标量的权重。假设每个item的贡献与相等,包含了个不同的items,成反比是合理的。更正式的,我们有:

…(8)

…(9)

…(10)

例如,表示每个刚好包含了一个item;而表示:product ID包含了10个不同的items

第二,item ID和attribute IDs间的结构连接意味着限制(constraints),例如:两个item IDs的向量应更接近,不仅是对于它们的共现,而且对于它们共享相同的product ID, store ID, brand ID或cate-level1 ID等。相反的,attribute IDs等价于包含在对应item IDs内的信息。以store ID为例,对于一个指定store ID的embedding vector,它可以看成是应该商店所售卖的所有item IDs的合适的总结(summary)。 相应的,我们定义了:

…(11)

其中,是一个转移矩阵,它会将embedding vector 转称到相同维度的embedding vector 上。接着,我们最大化下面的平均log概率:

…(12)

其中,是介于IDs间的约束强度,是在转移矩阵上的L2正则的强度。

我们的方法可以将item ID和它的attrbute IDs嵌入到一个语义空间中,它很有用。item ID的属性和它的attrbute IDs对于一个相对长的时间来说是稳定的,该jointly embedding model和学到的表示会每周更新一次。

3.5 Embedding User IDs

用户偏好受item IDs交互序列的影响,通过对交互的item IDs的embedding vectors做聚合来表示user IDs是合理的。有许多方法来聚合item embedding vectors,比如:Average, RNN等[26],本paper中使用的是平均方式(Average)。

由于Hema中的用户偏好变化很快,user IDs的embedding vectors也应进行频繁更新(比如:按天更新),来快速响应最新的偏好。不同于RNN模型,它需要训练过程并且计算开销很大,Average可以在很短的时间内学习和更新表示。

对于用户,假设表示交互序列,其中最近的T个item IDs以逆时序的方式排列。我们为用户u构建了embedding vector:

其中,的embedding vector。

3.6 模型学习

对该jointly embedding model进行优化等同于最大化(12)的log似然,它与log-uniform negative-sampling相近。为了解决该最优化问题,我们首先使用“Xavier” initialzation来初始化所有可训练参数。接着使用SGD算法和shuffled mini-batches到J上。参数的更新通过BP+Adam rule来完成。为了加速并行操作,在NVIDIA-GPU+tensorflow上训练。

模型的超参数设置如下:context window C=4; negative samples数 S=2; embedding dimensions为 ;constraints强度;L2 reg强度 ;batch size=128, 训练5个epochs。

#

参考