youku在《Deep Time-Stream Framework for Click-Through Rate Prediction by Tracking Interest Evolution》提出了一个兴趣演进的框架。

摘要

CTR预测在像视频推荐等工业应用中是一个必要的任务。最近,deep learning模型被用来学习用户的整体兴趣表示(overall interests),然而会忽略兴趣可能会随时间动态变化的事实。我们认为:有必要在CTR模型中考虑上连续时间信息(continuous-time information)来从丰富的历史行为中跟踪用户兴趣。在本paper中,我们提出了一个新的Deep Time-Stream framework(DTS),它会通过一个常微分方程(ODE: ordinary differential equation)来引入time information。DTS会使用一个neural network来持续建模兴趣的演化,它可以来解决用户兴趣会随它们的历史行为动态表征带来的挑战。另外,我们的框架可以通过利用额外的Time-Stream Module,无缝地应用到任意deep CTR模型上,对原始CTR模型不会做任何变改。在公开数据集的实验、以及工业数据集的表现看,可以达到很好的效果。

介绍

CTR预测目标是估计一个用户在一个给定item上的概率,在学习界和工业界这是一个备受关注的问题。以在线视频为例,一个CTR算法会提供给用户数千个不同类目的视频,因此,精准捕获用户的兴趣很重要,可以提升用户的留存和收益。

为了达到该目标,基于用户历史点击进行建模用户兴趣会影响用户偏好。为了抽取用户兴趣的表示,提出了许多传统模型、以及deep模型。尽管这些模型在建模用户整体兴趣时达到了极大成功,它们会忽略用户兴趣的动态变化。为了进行一个更精准的结果,RNN-based方法提出捕获在user-item interaction序列中的依赖。然而,这些方法只考虑用户行为的顺序,忽略在行为间的时间间隔(time interval),它对于预测用户行为是很重要的信息。在图1中,作为示例,Mike通常会在白天观看关于Donald Trump的视频,在晚上享受Taylor Swift的音乐视频,根据他的行为的timestamps。因而,将Mike的playlog看成一个点击视频序列,会忽略他的潜在兴趣随时间的变化。不幸的是,现有的CTR模型不能建模在连续时间上的模式,因为大多数模型不知道时间间隔(time interval)。

图片名称

图1

另外,在inference阶段,只预测下一次点击(next click)而不考虑执行action时的时间会有问题。将用户行为的时间合并进去,比如:建模在行为间的逝去时间间隔(elapsed time interval)的效果,这对于精准建模用户兴趣非常重要。例如,在图1中,如果Mike在9 p.m.(下午)观看了Taylor的视频,很可能他会在几小时内观看另一个Taylor的视频(而非Donald),而在半天后观看Donald的视频概率会更大些。然而,传统方式总是在任意时刻上获得相同的精准预测。

基于前面的观察,我们认为在CTR模型上考虑上time-stream信息(比如:连续时间信息:constinous-time info)很重要。因此,我们提出了一种新的Deep Time-Stream framework(DTS),它会将time-stream信息引入到CTR模型中。因此,我们提出了一种新的Deep Time-Stream框架(DTS)。Time-stream信息可以通过常微分方程(ODE)进行公式化,它指的是一个描述在依赖变量的导数和独立变量间的关系的函数。特别的,DTS会使用ODE来建模用户潜在兴趣的演化,它会将用户在兴趣状态随时间进行求导参数化,比如:ODE的解会描述用户兴趣的动态演化。另外,DTS会具有以下能力:统一在time-stream(通过点击的timestamp进行)上的用户历史行为(已点击什么)和target items(将点击什么),因而根据给定的下一时间(next time)做出inference,并提供一个更加精准的CTR预测。为了达到最小的模型变更代价(model-altering cost),ODE会被打包成一个Time-Stream Module,它可以应用到任意的deep CTR模型上。该paper的贡献如下:

  • 提出了一个新的DTS框架,会将用户的latent interest evolution建模成一个ODE,它会极大提升模型的表达能力,可以更好地捕获用户兴趣的演进
  • DTS可以在任意时间生成用户的feature,因而对于适配评估很灵活
  • Time-Stream Module可以轻易地转成已存在的CTR模型,无需对原始框架做变化

1.背景

在机器学习中,有效管理一类hypotheis(线性或非线性),可以表示data patterns。ODEs可以被用于一个hypothesis。考虑在\(R^d\)中的微分方程:\(\frac{dz}{dt} = f(z, t), z(0)=z_0\),z在time t上的解被定义成\(z(t)\)。在监督学习中的ODE方法背后的基本思想是,调整f,使得z(t)可以生成拟合该数据所需的非线性函数。

实际上,Chen 2018的DNN被看成是discrete ODE,他们的迭代更新可以被看成是关于一个连续转换(continuous transformation)的Euler discretization。在另一方面,neural ODEs是一组DNNs模型的family,可以被解释成一个关于ResNets或RNN的continous等价。为了观察该现象,我们会将在ResNets或RNNs中的一个layer t到t+1的hidden state看transformation看成是:

\[h_{t+1} = h_t + f_t(h_t)\]

…(1)

在ResNets中,\(h_t \in R^d\)是在layer t的hidden state;\(f_t: R^d \rightarrow R^d\)是一个差值函数(differentiable function),它会保留\(h_t\)的维度。在RNNs中,\(h_t \in R^d\)是第t个RNN cell上的hidden state,它更新时会抛出一个函数\(f_t: R^d \rightarrow R^d\)。\(h_{t+1} - h_t\)的差可以看成是一个在timestep \(\Delta t = 1\)上的导数\(h'(t)\)的离散化(discretization)。假设:\(\Delta t \rightarrow 0\),我们可以看到:动态的hidden state可以通过一个ODE进行参数化:

\[\underset{\Delta t \rightarrow 0}{limit} \frac{h_{t+\Delta t} - h_t}}{\Delta t} = f(h, t)\]

z(t)的解或h(t)可以使用一个ODE solver进行求解,会使用许多复杂数值方法来选择:比如:linear multi-step方法、RUnge-kutta methods或adaptive time-stepping。以上方法在deep learning中很有用,因为他们可以自适应地选择network的layers。这里要注意的不是solver本身,而是数据的表示。因此我们将solver看成是一个黑盒的differential equation solver:

\[z_{t_1}, ..., z_{t_N} = ODE_{solver}( z_{t_0}, f, \theta_f, t_1, \cdots, t_N)\]

…(2)

其中,\(\theta_f\)是关于f的参数。

在下一节中,我们会展示,ODEs是如何被用来建模用户兴趣演化的动态性的,以及如何让ODEs在训练时能够稳定。

2.Deep Time-Stream Framework

在本节中,我们会描述DTS。首先将CTR公式化成一个二分类问题。给定数据样本:

\[x = (x^U, x^V, x^P) \in X\]

其中: \((x^U, x^V, x^P)\)分别表示来自User behavior、target Video以及user Profiles这些不同字段的one-hot vectors的concatenate。

再者,每个字段包含了一个关于点击行为的列表:

\[x^U = [(v_1, c_1); (v_2, c_2); \cdots; (v_N, c_N)]\]

其中:

  • \(x_i^U = (v_i, c_i)\)表示发生在time \(t_i\)的第i个行为上
  • video \(v_i\)以及相应的category \(c_i\),其中N是user的历史行为的数目;
  • \(x^V\)表示target video和它的category \(x^V = (v_{N+1}, c_{N+1})\),等式的成立是因为:target video会随着第(N+1)的用户点击而发生,potential click的预测时间被看成是next time \(t_{N+1}\)。

因而,我们会统一在time stream上的用户历史行为和target video,通过timestamps来表示t:

\[t = [t_1, t_2, \cdots, t_N, t_{N+1}]\]

User Profile \(x^P\)包含了有用的profile信息,比如:gender、age等。Label \(y \in Y\)表示用户是否点击是指定的视频,\(y=1\)表示点击,\(y=0\)表示未点击。CTR的目标是学习一个从X到Y的mapping \(h \in H\),其中,\(H\)表示hypothesis space,\(h: X \rightarrow Y\)表示预测用户是否将点击该视频。预测函数h可以通过以下objective function进行最小化学到:

\[\underset{h}{min} \sum\limits_{(x,y) \in X \times Y} L(h(x;t), y)\]

…(3)

其中,L是epmirical loss,它会在以下子部分引入。

2.1 通用框架

我们提出的框架DTS可以看成是一个Base-Model加上Time-Stream Module,如图2所示。BaseModel被看成是一个已经存在的deep CTR模型,比如:DNN,PNN,DIN等。除了base model外,Time-Stream Module会收集所有events的timestamps,包括:一个用户在过去的历史点击时间、以及在预测时的用户潜在点击时间。注意,后半部分在已存在的CTR模型中会被忽略。另外,Time-Stream Module会通过一个ODE来跟踪潜在兴趣演进,来计算一个增强型输入(enhanced input),它会引入continuous-time信息,并保留base inputs的维度。因此,在DTS框架中,任意的deep CTR模型可以被用于BaseModel,无需做任何更改。对比BaseModel,它会输入在用户点击item事件上的一个点击概率,DTS可以通过在给定时间上用户点击item事件的点击概率,从而对output做出提升。

图片名称

图2

在面,我们会介绍BaseModel,并引入Time-Stream Module来捕获兴趣,并建模兴趣演进。

2.2 BaseModel

2.3 Time-Stream Module

用户兴趣会随时间动态变化。BaseModel会通过一个在点击item feature上的pooling操作获取一个表示向量,但会忽略时间信息。动态pattern的缺失会限制用户行为特征的能力,这对于建模用户兴趣很重要,因为用户点击items是一个用户在对应时间上对兴趣的表示。对于BaseModel,如果对continous pattern的能力缺失会导致在建模动态用户兴趣时的inaccuracy。

是否存在优雅的方式来表示一个用户的real-time兴趣,并建模动态兴趣演化的pattern?continous-time evolving激发我们设计了一个称为Time-Stream Framework的方法,它会利用ODE来建模动态兴趣。ODE在物理、生物、化学、工程和电子领域被广泛应用,如果ODE可解,会给出一个初始点(initial point),它可以决定所有它的future positions,这些points被称为“trajectory或orbit”。本文中我们使用ODEs作为hypothesis class,其中trajectory表示一个潜在的兴趣演化轨迹(lantent interst evolution trace)。在等式1中,ODE可以是通用的RNNs形式,RNNs可以被认为是continuous ODE的一个离散版本。continous ODE具有一些优点,比如:评估很灵活,相应的可以自适应地选择RNN的长度。另外,我们也可以使用高级数值方法来训练,比如:multi-grid方法、parallel shooting方法。图3展示了Time-Stream Module的架构。

图片名称

图3 Time-Stream Module的结构。DTS会保持BaseModel的基本框架,可以继承原先的效果。另外,DTS会扩展Time-Stream module,将latent time state \(z_t\)建模成一个ODE。Decoder \(\phi\)会将\(z_t\)映射到embedded space,并混合上embedding来增强embedding的quality。Guide loss被设计用来帮助hidden state的收敛

为了通过ODE的一个latent trajectory来表示兴趣演进,会使用一个可微函数,\(\frac{d z(t)}{dt} = f(z(t), t; \theta_f)\)来表示兴趣演化率,其中:\(\theta_f\)是关于f的参数。因此,给定一个initial state \(z_{t_0}\),ODE的trajectory可以使用等式(2)提到的一个solver来进行求解:

\[z_{t_1}, \cdots, z_{t_N}, z_{t_{N+1}} = ODE_{solver}(z_{t_0}, f, \theta_f, t_1, \cdots, t_N, t_{N+1})\]

…(5)

其中,\(z_{t_1}, \cdots, z_{t_N}, z_{t_{N+1}}\)是ODE的解,它可以描述dynamics f在每个观察时间\(t_1, \cdots, t_N, t_{N+1}\)的latent state。由于相似的人可能会有相近的兴趣兴趣演进pattern,我们会构建一个mapping g,它可以将user profile embedding \(e^P\)转化成latent time-stream space来获取initial value:\(z_{t_0} = g(e^P; \theta_g)\),mapping g是一个具有参数\(\theta_g\)的线性转换,它会当成是一个将profile embedding space转化latent time-stream space的encoder。

另一方面,\(\phi\)是一个decoder,它可以将latent time-stream feature \(z_{t_i}\)转成video embedding-spaned space。\(\phi(z_{t_i}; \theta_{\phi}\)是behavior feature的adujstment或supplementary,它可以携带额外的行为演化patterns。 对于user behavior feature的adujstment,我们有:\(\bar{e_i} = e_i + \phi(z_{t_i}; \theta_{\phi})\),其中:\(i=1, 2, \cdots, N\)。fuse operation可以被设置成像concatenation的operation,但在本工作中,add操作会被用来保证adujstment以及original feature具有相同贡献。对于target video feature,我们有:\(\bar{e}^V = e_{N+1} + \phi(z_{t_{N+1}; \theta_\phi)\)

增强行为特征(enriched behavior feature) \(\bar{e}^U = (\bar{e}_1, \bar{e}_2, \cdots, \bar{e}_N)\),video vector \(\bar{e}^V\)和profile feature \(e^P\)会接着被发送到Base CTR模型的其余部分。

使用ODE作为一个generative model,允许我们在任意时间做出预测,不管是过去或是将来,因为在timeline上是连续的。ODE的output可以通过一个黑盒的差分等式solver进行计算,它会来评估hidden unit dynamics是否需要来决定有期望的accuracy的solution。

function f的选择

latent function f需要被指定,使用不同类型的函数来满足不同需求。接着,我们会引入一些方法来利用不同类型的ODE function f来建模intrest evolution的过程。

Simple form

function f的最简单形式是,f是一个关于独立变量t的函数:

\[f(z, t) = \frac{dz}{dt} = A(t), z(t)=\int_{t_0}^t A(\lambda) d{\lambda} +C\]

…(6)

其中,A是control function,C是一个constant。该类型的问题可以通过直接计算z(t)具有一个解析解。如果这样,数值形求解ODE不存在额外开销。一个特例是具有常系数的linear differential equation \(f(z, t) = A(t) = \alpha\),它意味着在rate \(\alpha\)时有latent state discount。因此,对于所有的t会有\(z_{t_i} = \alpha (t_i -t_0) + z_{t_0}\)。这里的看法是,f的单调trajectory会模拟用户兴趣的特性:主要被最近兴趣所影响,因此会减小较早兴趣的影响,并增加用户最近行为的影响。特例相当简单,但在实验中达到很好的效果。

复杂形式

f的简单形式不能表达用户diverse的time-searies的pattern。为了解决该限制,另一个选择是:使用一个neural network参数化dynamics f的导数,它可以极大提升模型的表示能力。在本paper中,会使用一个带sogmoid activation unit的双层neural network:\(f(z) = \sigmoid(w_2 \cdot \sigmoid(w_1 \cdot z + b_1) + b_2)\)

其中:\(w_1, w_2, b_1, b_2\)是线性参数,\(\sigmoid(\cdot)\)是activate unit。在该形式下的f很难获得一个解析解 ,在\(z_{t_1}, \cdots, z_{t_N}, z_{t_{N+1}}\)下的解可以使用一个数值形ODE solver来计算。

Guide Loss

前面的函数在单次调用ODE toolbox上可以被求解,现代ODE solvers会在approx error的增长上会有保障。然而我们有以下需要注意的事项:

1) 当function形式变得复杂时,ODE的行为可能会遇到expolodes的情形,收敛到稳态或者展示混乱行为。这可以解释一些难点:比如:在DNN训练中遇到的梯度vanishing或explosion。

2) 另一方面,由于target item的行为会由用户兴趣演进所触发,该label只表示\(z_{t_{N+1}}\)的最后点击行为,而历史state \(z_t\)不会获得合适的监督(supervision)。

为了缓解这些问题,我们提出了guide loss,它会使用behavior embedding \(e_i\)来监督latent function的学习。为了这样做,受word2vec的启发,我们构建了一个小网络,它会将decoded hidden state \(\phi(z_{t_i})\)推至更接近下一行为\(e_{i+1}\),而非一个随机负采样实例\(e^{rand}\)。Guide loss可以公式化为:

\[L_{guide}(p,v,n)=- \frac{1}{N} \sum_i (v_i \cdot p_i + v_i \cdot n_i - log(\frac{v_i \cdot p_i}{v_i \cdot n_i})) \\ p_i = FC(e_{i+1}), v_i = FC(\phi(z_{t_i})), n_i = FC(e^{rand})\]

其中,FC(x)是一个将PRelu作为activation的fully connected layer。模型的整个loss如下:

\[L = L_{target} + \lambda L_{guide}\]

…(7)

其中,L是overall loss function,\(L_{target}\)由等式(4)引入,\(\lambda\)是hyper-parameter,它会对兴趣表示和CTR预测进行balance。

整体上,guide loss的引入有一些优点:

  • 1) 从兴趣学习的角度,guide loss的引入会帮助ODE的每个hidden state更丰富地表示兴趣
  • 2) 对于ODE的最优化,当ODE会建模长历史行为序列时,guide loss会减小BP的难度
  • 3) 对于embedding layer的学习,Guide loss会给出更多语义信息,这会产生一个更好的embedding matrix

training和inference

在训练阶段,我们的模型会具备重新加载BaseModel参数的能力。接着,所有weights会进行finetuned来获得一个快速收敛。我们会通过初始化f的参数以及初始值为0来达到一个safe-start,比如:ODE的trajectory是一个0常数。这样,在训练的开始,整个模型会与original CTR base model保持相同。

在inference阶段,我们可以在任意的推荐时间\(t_{N+1}\)来预测用户兴趣演进,因为我们会利用ODE solver来在下一时间\(t_{N+1}\)来集成f的函数。在工业界,DTS会更有效:当预测在\(t_{N+1}, t_{N+2}, t_{N+n}\)的多个CTR时,没有必要从头计算hidden trajectory。很容易集成从\(t_N\)到\(t_{N+n}\)的function,它们的计算很cheap。

4.实验

参考

1.介绍

最近几年,DNNs已经在推荐任务预测上达到了非常好的效果。然而,大多数这些工作集中在模型本身。只有有限的工作把注意力放到输入的特征方面,而它可以决定模型表现的上界(upper-bound)。在本工作中,我们主要关注于特征方面,特别是在电商推荐中的features。

为了确保offline training与online serving的一致性,我们通常在真实应用的两个enviorments中我们使用相同的features。然而,有一些有区分性的特征(discriminative features)会被忽略(它们只在训练时提供)。以电商环境中的CVR预测(conversion rate)为例,这里我们的目标是:估计当用户点击了该item后购买该item概率。在点击详情页(clicked detail page)上描述用户行为的features(例如:在整个页面上的dwell time)相当有用。然而,这些features不能被用于推荐中的online CVR预测,因为在任意点击发生之前预测过程已经完成。尽管这样的post-event features确实会在offline training记录。为了与使用privildeged information的学习相一致,这里我们将对于预测任务具有区分性(discriminative)、但只在训练时提供的features,称为priviledged features

使用priviledged features的一种简单方法是:multi-task learning,例如:使用一个额外的任务来预测每个feature。然而,在multi-task learning中,每个任务不必满足无害保障原则(no-harm guarantee)(例如:priviledged features可能会伤害原始模型的学习)。更重要的是,由于估计priviledged features比起原始问题[20]更具挑战性,很可能会与no-harm guarantee原则相冲突。从实际角度看,当一次使用数十个priviledged features,对于调整所有任务来说是个大挑战。

受LUPI(learning using priviledged information)【24】的启发,这里我们提出priviledged features distillation(PFD)来使用这些features。我们会训练两个模型:一个student和一个teacher模型。

  • student模型:与original模型相同,它会处理offline training和online serving的features。
  • teacher模型:会处理所有features,它包括:priviledged features。

知识会从teacher中distill出来(例如:在本工作中的soft labels),接着被用于监督student的训练,而original hard labels(例如:{0, 1})它会额外用来提升它的效果。在online serving期间,只有student部分会被抽出,它不依赖priviledged features作为输入,并能保证训练的一致性。对比起MTL,PFD主要有两个优点:

  • 一方面,对于预测任务,priviledged features会以一个更合适的方式来进行组合。通常,添加更多的priviledged features会产生更精准的预测
  • 另一方面,PFD只会引入一个额外的distillation loss,不管priviledged features的数目是多少,很更容易进行平衡

PFD不同于常用的模型萃取(model distillation:MD)[3,13]。

  • 在MD中,teacher和student会处理相同的inputs,teacher会使用比student更强的模型。例如,teachers可以使用更深的network来指导更浅的students。
  • 而在PFD中,teacher和student会使用相同的模型,但会在inputs上不同。PFD与原始的LUPI【24】也不同,在PFD中的teacher network会额外处理regular features。

图1给出了区别。

在本工作中,我们使用PFD到taobao推荐中。我们在两个基础预测任务上,通过使用相应的priviledged features进行实验。主要贡献有4部分:

  • 在taobao推荐中定义了priviledged features,并提出了PFD来使用它们。对比起MTL来独立预测每个priviledged feature,PFD会统一所有的模型,并提供一个一站式(one-stop)的解。
  • 不同于传统的LUPI,teacher PFD会额外使用regular features,它会更好地指导student。PFD与MD互补。通过对两者进行组合,例如:PFD+MD,可以达到更进一步的提升
  • 我们会通过共享公共输入组件(sharing common input components)来同步训练teacher和student。对比起传统的异步使用独立组件进行训练,这样的训练方式可以达到更好的效果,而时间开销会进一步减小。因此,该技术在online learning中是可用的,其中real-time计算需要。
  • 我们会在taobao推荐的两个基础预测任务上进行实验,例如:粗排中的CTR预测,以及粗排中的CVR预测。通过对interacted features(交叉特征)进行distill是不允许的,因为在粗排中的效率问题,以及在精排CVR中的post-event features,我们可以对比baseline达到极大的提升。在on-line A/B tests中,在CTR任务上点击指标可以提升+5%。在CVR任务中,conversion指标可以提升+2.3%。

2.相关distillation技术

在给出我们的PFD的详细描述前,首先介绍下distillation技术。总体上,该技术的目标是,帮助non-convex的student models来更好地训练。对于model distillation,我们通常会按如下方式写出objective function:

\[\underset{W_s}{min} (1-\lambda) * L_s(y, f_s(X; W_s)) + \lambda * L_d (f_t(X; W_t), f_s(X; W_s))\]

…(1)

其中:

  • \(f_t\)和\(f_s\)分别是teacher模型和student模型
  • \(L_s\)表示student pure loss,它具有已知的hard label y
  • \(L_d\)表示使用soft labels的loss,它由teacher产生
  • \(\lambda \in [0, 1]\)是超参数,用于对两个loss进行balance

对比起单独最小化\(L_s\)的original function,我们会期待在等式(1)中的additional loss \(L_d\)会帮助更好地训练\(W_s\),通过从teacher中对knowledge进行distilling得到。在[29]中,Pereyra et.将distillation loss看成是在student model上进行regularization。当单独以最小化\(L_s\)的方式训练\(f_s\)时,它被证明是获得overconfident preditions(过拟合的预测),会对training set过拟合。通过添加distillation loss,\(f_s\)也会逼近来自\(f_t\)的soft predictions。通过对outputs进行softening,\(f_s\)更可能会达到更好的泛化效果。

通常,teacher model会比student model更强大。teachers可以是一些models的ensembles,或者具有比student更多neurons、更多layers、或更广数值精度的DNNs。但也有些例外,比如,在[1]中,两个模型都会使用相同的结构,它们会相互学习,不同之处在于initialization以及处理训练数据的orders。

如等式(1)所示,teacher的参数\(W_t\)会在最小化期间fix住。我们可以将distillation技术划分成两个steps:首先使用已知的labels y训练teacher,接着通过最小化等式(1)来训练student。在一些应用中,模型会花费相当长的时间才收敛,等待teacher像等式(1)一样准备好是不实际的。作为替代,一些工作会尝试同步训练teacher和student【1,38,39】。除了像等式(1)那样从final output进行distilling之外,也可以从middle layer上进行disitll,例如:[30]尝试从intermediate feature maps进行distill,可以帮助训练一个deeper和thinner network。

除了从更复杂模型中对knowledge进行distill外,[24]提出从previledged information \(X^*\)上进行distill,它被认为是使用priviledged information(LUPI)进行学习。loss function接着变为:

\[\underset{W_s}{min} (1-\lambda) * L_s (y, f(X; W_s)) + \lambda * L_d (f(X^*; W_t); f(X; W_s))\]

…(2)

在[37]中,wang et使用LUPI来image tag推荐。除了teacher和student网络外,他们会额外学习一个discriminator,它会确认student更快地学习真实数据分布。Chen 使用LUPI来review-based 推荐。他们也会使用advrsarial training来选择informative reviews。另外,为了达到更好的效果,许多工作会在相对小的数据集上进行验证。但在工业级数据集上,仍有许多未知,这些技术需要在min-max game中达到均衡。

3.taobao推荐中的Priviledged features

图片名称

图2 taobao推荐总览。我们采用一个cascaded learning框架来select/rank items。在粗排中, interacted features(通常也是discriminattive)会被禁止,因为他们会在serving时极大增加时耗。一些有表征性的features会在下面部分演示

为了更好地理解priviledged features,我们首先如图2所示给出taobao推荐的一个总览。在工作推荐中通常这么做,我们采用cascaded 学习框架。在items呈现给用户前,有3个stages来select/rank items:candidate generation、coarse-grained ranking、fine-grained ranking。为了在效率和accuracy间做出一个好的trade-off,越往前的cascaded stage,会采用复杂和高效的模型,对items进行scoring会具有更高的时延。在candidate generation stage,我们会选择\(10^5\)个用户可能会点击或购买的items。总之,candidate genreation会从多个sources进行混合而来,比如:协同过滤、DNN模型等。在candidate generation之后,我们会采用两个stage进行ranking,其中PFD会在这时使用

在coarse-grained ranking stage中,我们主要会通过candidate generation stage来估计所有items的CTRs,它们接着被用来选择top-k个最高的ranked items进入到下一stage。预测模型的input主要包含了三个部分。

  • 第一部分:用户行为,它会记录用户点击/购买items的历史。由于用户行为是有序的,RNNs或self-attention会通常被用来建模用户的long short-term interests。
  • 第二部分:user features,例如:user id、age、gender等。
  • 第三部分:item features,例如:item id、category、brand等。

通过该工作,所有features都会被转换成categorical type,我们可以为每个feature学习一个embedding。

在粗排阶段,prediction model的复杂度会被严格限制,以便让上万候选在ms内完成。这里,我们使用inner product模型来对item scores进行measure:

\[f(X^u, X^i; W^u, W^i) \triangleq <\phi_{W^u}(X^u), \phi_{W^i}(X^i)>\]

…(3)

其中:上标u和i分别表示user和item。

  • \(X^u\):表示user behavior和user features的一个组合
  • \(\phi_W(\cdot)\)表示使用学到参数的非线性映射
  • \(W_{\cdot}<\cdot, \cdot>\)是内积操作

由于user侧和item侧在等式(3)中是独立的。在serving期,我们会事先离线计算关于所有items的mappings \(\phi_{W^i}(\cdot)\)。当一个请求到来时,我们只需要执行一个forward pass来获得user mapping \(\phi_{W^u}(X^u)\),并计算关于所有candidates的inner product,它相当高效。细节如图4所示。

如图2所示,粗排不会使用任何交叉特征,例如:用户在item category上在过去24小时内的点击等。通过实验验证,添加这样的features可能大大提高预测效果。然而,这在serving时会极大地增加时延,因为交叉特征依赖user和指定的item。换句话说,features会随着items或users的不同而不同。如果将它们放到等式(3)中的item或user侧。mappings \(\phi_w(\cdot)\)的inference需要执行和候选数一样多的次数,例如:\(10^5\)次。总之,non-linear mapping \(\phi_W(\cdot)\)的计算开销要比简单的inner product大许多阶。在serving期间使用交叉特征是不实际的。这里,我们将这些交叉特征看成是:在粗排CTR预测的priviledged features

在精排阶段,除了在粗排中也会做的CTR预估外,我们也为所有候选预估CVR,例如:如果用户点击某个item后会购买该item的概率。在电商推荐中,主要目标是最大化GMV(商品交易总量),它可以被解耦成CTR x CVR x Price。一旦为所有items估计CTR和CVR,我们可以通过expected GMVs来对它们进行排序来最大化。在CVR的定义中,很明显,用户在点击item详情页上的行为(例如:停留时长、是否观看评论、是否与卖者进行交流等),对于预测来说相当有用。然而,在任何future click发生前,CVR必须要对ranking进行估计。描述在详情页上用户行为的features在inference期间并没有提供。这里,我们可以将这些features表示成priviledged features来进行CVR预测。为了更好地理解它们,我们给出图3进行演示。

图片名称

图3 描述了clicked item的详情页上的用户行为。包括没有展示的dwell time,这些features对于CVR预测来说是相当有信息量的(informative)。然而,在serving时,如左子图所示,在任意item被点击之前,我们不必使用CVR来对所有candidate items进行rank。对于CVR预测,我们将这些features表示成priviledged features

4.Priviledged Feature Distillation

如等式(2)所示,在原始的LUPI,teacher依赖于priviledged information \(X^*\)。尽管信息量大,在本工作中的priviledged featues只能部分描述用户的偏好。使用这些features的表现要比使用常规特征(regular features)要差。另外,基于priviledged features的预测可能有时会被误导(misleading)。例如,对于顾客来说,通常会在昂贵item上花费更多时间来最终决定,而这些items的转化率相当低。当进行CVR估计时,LUPI的teacher会依赖于priviledged features(例如:停留时间)做出预测,但不考虑regular features(例如:item price),这会导致在昂贵items上做出false positive predictions。为了缓和它,我们会额外将常规features feed给teacher model。等式(2)的原始function可以修改如下:

\[\underset{min}{W_s} (1-\lambda) * L_s (y, f(X; W_s)) + \lambda * L_d( f(X, X^*; W_t), f(X; W_s))\]

…(4)

通常,添加更多信息(例如:更多features),会得到更精准的predictions。teacher \(f(X, X^*; W_t)\)这里期望会比sutdent \(f(X; W_s)\)、或者LUPI \(f(X^*; W_t)\)的teacher更强。在上述场景上,通过考虑上priviledged features和regular features,可以使用停留时长(dwell time)来区分在不同昂贵items上的偏好程度。teacher会有更多的知识来指导student,而非误导它。通过以下实验进行验证,添加regular features到teacher中是non-trivial的,它可以极大提升LUPI的效果。从那以后,我们将该技术表示成PFD来区别LUPI。

如等式(4)所示,teacher \(f(X, X^*; W_t)\)会优先训练。然而,在我们的应用中,单独训练teacher model会花费一个较长时间。使用像等式(4)这样的distillation是相当不实际的。更可行的方式是,像[1,38,39]的方式同步地训练teacher和student。objective function接着被修改如下:

\[\underset{W_s, W_t}{min} (1-\lambda) * L_s(y, f(X;W_s)) + \lambda * L_d(f(X,X^*;W_t), f(X;W_s)) + L_t(y, f(X, X^*; W_t))\]

…(5)

尽管会节省时间,同步训练可能不稳定(un-stable)。在early stage时,teacher模型没有被well-trained,distillation loss \(L_d\)可能会使student分心(distract),并减慢训练。这里我们通过一个warm up scheme来缓和它。在early stage时我们将等式(5)的\(\lambda\)设置为0,从那以后将它固定到一个pre-defined value,其中swapping step可以是个超参数。在我们的大规模数据集上,我们发现,这种简单的scheme可以良好地运转。不同于相互学习(mutual learning),我们只允许student来从teacher那进行学习。否则,teacher会与student相互适应,这会降低效果。当根据teacher参数\(W_t\)分别计算gradient时,我们会触发distillation loss \(L_d\)。算法1使用SGD更新如下。

根据该工作,所有模型都会在parameter server系统上进行训练,其中,所有参数都会存储在servers上,大多数计算会在workers上执行。训练速度主要决取于在workers上的计算负载以及在workers和servers间的通信量。如等式(5)所示,我们会一起训练teacher和student。参数数目和计算会加倍。使用PFD进行训练可能会比在student上单独训练更慢,这在工业界是不实际的。特别是对于在线学习,会要求实时计算,采用distillation会增加预算。这里我们会通过共享在teacher和student的所有公共输入部分来缓和该问题。由于所有features的embeddings会占据在servers上的大多数存储,通过共享通信量可以减小一半。该计算可以通过共享用户点击/购买行为的处理部分来减小,它的开销较大。正如以下实验所验证的,我们可以通过sharing来达到更好的表现。另外,对比起单独训练student,我们只会增加一些额外的时间,对于online learning来说这会使得PFD更适应些(adoptable)。

扩展:PFD+MD

如图1所示,PFD会从priviledged features中distill知识。作为对比,MD会从更复杂的teacher model中distill知识。两个distillation技术是互补的。一个天然扩展是,将它们进行组合来构成一个更复杂的accurate teacher来指导student。

图片名称

图1 MD与PFD。在MD中,knowledge会从更复杂的模型中distill出来。在PFD中,knowledge会同时从previledged和regular features中进行distill。PFD也会与使用priviledged information(LUPI)的original learning有所不同,其中teacher只处理priviledged features

在粗排的CTR prediction中,如等式(3)所示,我们使用inner product模型来在serving上增加效率。事实上,inner product模型会被认为是泛化的MF(gnerelized matrix factorization)。尽管我们正使用非线性映射\(\Phi_W(\cdot)\)来转移user和item inputs,该模型能力天然受限于内积操作的bi-linear结构。DNNs,它可以逼近任意函数,被认为是对于在teacher中的inner product模型的一个替代。事实上,如【22】中的定义1所示,乘积操作可以通过一个two-layers的NN(在hidden layer上只有4个neurons)来逼近任意小。因此,使用DNN的表现被认为是inner-product模型的下界(lower-bounded)。

图片名称

图4

在PFD+MD中,我们也采用DNN模型作为teacher network。事实上,这里的teacher model与我们在精排CTR预测使用的模型相同。本任务中的PFD+MD可以被认为是从精排中distill知识,来提升粗排。为了更好地演示,我们在图4中给出了整个框架。在serving期间,我们会只抽取student部分,它依赖于priviledged features。由于所有items的mappings \(\phi_{W^i} (X^i)\)是与users相互独立的,我们会事先对它们进行离线计算。当一个请求过来时,user mapping \(\phi_{W^u}(X^u)\)会首先计算。这之后,我们会使用所有items的mappings(它们从candidate generation阶段生成)来计算inner-product。top-k得分最高的items接着被选中并被feed给精排。基本上,我们只要执行一个forward pass来获得user mapping,并在user和所有candidates间执行高效地inner product操作,它在计算方面相当友好。

图片名称

图5

5.实验

在taobao推荐上做了实验,目标是回答以下的研究问题:

  • RQ1: PFD在粗排的CTR任务上的表现,以及在精排CVR上的表现?
  • RQ2: 对于独立的PFD,我们可以通过将PFD与MD进行组合来达到额外的提升?
  • RQ3: PFD对于等式(5)中的超参数\(\lambda\)敏感吗?
  • RQ4: 通过共享公共输入部件(),同时训练teacher和student的效果是什么?

5.1 实验setting

5.2 粗排CTR

5.3 精排CVR

5.4 RQ3-4

6.结论

参考

微信在《Deep Feedback Network for Recommendation》提出了DFN。

摘要

显式与隐式反馈可以影响用户关于items的opinions,这对于学习用户偏好来说是必要的。然而,大多数当前的推荐算法主要关注于隐式正反馈(implicit positive feedbacks: 例如:click),忽略了其它有信息的用户行为。在本paper中,我们的目标是:联合考虑explicit/implicit以及positive/negative feedbacks来学习用户的无偏偏好。特别的,我们提出了一种新的Deep feedback network(DFN)来建模click、unclick和dislike行为。DFN具有一个内部feedback interaction组件,它可以捕获用户行为间的细粒度交叉(fine-grained interactions),一个额外的feedback interaction组件可以使用精准但相对少的feedbacks(click/dislike)来从丰富但带噪声的feedbacks(unclick)中抽取有用信息。在实验中,我们在wechat top stories的推荐系统上,对数百万用户做了实验。DFN带来了极大的提升。源代码为:https://github.com/qqxiaochongqq/DFN

1.介绍

个性化推荐系统的目标是,为用户根据它们的偏好提供定制的items。它们在视频和电商业被广泛使用。

推荐系统中大量使用user-item interactions来进行个性化。这些重要的信息主要有两大类:explicit feedback和implicit feedback。explicit feedback来自于用户对items的直接意见(比如:评分、like/dislike等)。它可以很精准地表示用户的真实偏好,而收集这样的feedback相当不容易。相反,implicit feedback主要来自于具有暗示非直接意见的用户行为(例如:click或unclick)。在真实推荐系统中,很容易从大量用户行为中收集这样的隐式反馈。然而,implicit feedbacks会混杂着许多其它内在的noises,以及少量的真实负反馈,这会损害学习用户的无偏偏好.

最近,推荐系统通常会将个性化推荐看成是一个CTR预测任务。因此,它很自然地,大多数推荐算法主要关注于显式正反馈:点击,这在实际中很容易获取。这些模型会直接使用点击行为和CTR目标进行最优化,它会产生以下的问题。首先,CTR目标的objectives通常关注于:用户喜欢什么,忽略掉用户不喜欢什么。简单依赖于这些implicit positive feedbacks会使得模型趋向于提供均匀的(homogeneous)、短视(myopic)的结果,这会伤害用户体验。因此,negative feedbacks应在推荐中被考虑。第二,除了被动地接受由模型选中的信息外,用户也需要有效和高效的反馈机制来激活与推荐系统的交互。再者,由于用户的implicit feedbacks与它的真实偏好(点击并不总是意味着喜欢)间存在gap。它也证实了explicit feedbacks的必要性。

多个explicit/implicit和positive/negative feedbacks可以互补,并影响用户的无偏偏好。有一些工作:使用隐式反馈和显式反馈的CF(Liu 2010)、多任务学习(Hadash 2018)。然而,这些工作中,negative feedbacks通常会被忽略,或者只存在显式反馈(这很精准、但量很少)。一些工具会考虑unclick或missing行为作为隐式负反馈来乘上负信号(negative signals)。不幸的是,在这些implicit negative feedbacks中的noises会严格限制效果表现,因此,这些implicit negative feedbacks会通过许多除了dislike之外的原因造成。

图片名称

图1

。。。

2.相关工作

。。。

3.方法

我们的目标是,将多个explicit/implicit和positive/negative feedbacks进行联合考虑来学习用户无偏偏好。特别的,我们提出了DFN模型,它会收集用户历史行为中的三种类型的feedbacks:

  • implicit positive feedbacks:implicit positive feedbacks是在大规模推荐中被广泛使用的feedbacks,它在量级和质量上均比较满意。根据大多数conventional模型,我们考虑点击行为序列 \(\lbrace c_1, \cdots, c_{n_1}\rbrace\)作为在DFN中使用的implicit positive feedback。
  • explicit negative feedbacks:Explicit feedbacks是高质量的,但在真实推荐中很少。我们会使用与每个item相关的dislike按钮来收集explicit negative feedback序列 \(\lbrace d_1, \cdots, d_{n_2}\rbrace\)
  • implicit negative feedbacks:我们会将曝光未点击(impressed but unclick)的行为序列\(\lbrace u_1, \cdots, u_{n_3}\rbrace\)作为implicit negative feedbacks。这种未点击行为在所有feedbacks类型中占绝大多数,而它会与噪声和false-negative信号相混杂。

CFN尝试使用高质量的click和dislike behaviors作为instructors来从未点击行为中抽取有用信息。在DFN中很容易添加其它类型的feedbacks。

3.1 整体架构

Deep feedback network主要包含两个模块,称为:deep feedback interaction模块与feature interaction模块。首先,deep feedback interaction模块会采用多个feedbacks作为inputs,使用内部和外部的feedback interactions来抽取用户无偏的positive和negative偏好。第二,refined feedback features会与其它有信息特征(比如:user profiles、item features以及contexts)进行组合。我们会实现Wide、FM和Deep组件来进行特征聚合(feature aggregation)。最终,feature interaction模块的outputs会feed给full connected和softmax layers来进行positive和negative losses的模型最优化。图2(a)展示了DFN的整体架构。

图片名称

图2

3.2 DFN module

图2(b)中的deep feedback interaction模块会采用对于target item的implicit positive(click),explicit negative(dislike)以及implicit negative(unclick) feedbacks作为inputs。我们会使用两个components来从inside和between不同类型的feedbacks的交叉中进行学习。

Internal Feedback Interaction Component

对于一个特定类型的feedback,该component会关注target item和individual behaviors间的交叉。我们会根据Vaswani[2017]的行为使用一个multi-head self-attention。所有的行为特征包含了它们的item embeddings和position embeddings,会被投影到一个联合语义空间(joint semantic space)中来形成behavior embeddings。以点击行为为例,我们会将target item t与点击序行的behavior embeddings进来组合来形成输入矩阵 \(B_c = \lbrace t, c_1, \cdots, c_{n_1} \rbrace\)。query, key, value矩阵可以通过如下进行计算:

\[Q = W^Q B_c, K=W^K B_c, V=W^V B_c\]

…(1)

其中,\(W^Q, W_K, W^V\)是投影矩阵。我们接着通过下面方式计算self-attention:

\[Attention(Q, K, V) = softmax(\frac{Q^T K}{\sqrt{n_h}}) V\]

…(2)

其中,\(n_h\)是query、key、value的维度。总共h个multi-heads的第i个head可以通过如下进行计算:

\[head_i = Attention(W_i^Q Q, W_i^K K, W_i^V V)\]

…(3)

\(W_i^Q, W_i^K, W_i^V \in R^{n_k \times n_k / h}\)是第i个head的weighting矩阵。self-attention的最终输出矩阵是:

\[F_c = concat(head_1, \cdots, head_h) \cdot W^O\]

…(4)

\(W_O \in R^{n_h \times n_h}\)是投影矩阵。最终,我们通过在\(F_c\)中所有n+1的output embeddings上进行一个average pooling来生成implicit positive feedback embedding \(f_c\):

\[f_c = Average_pooling(F_c), f_c \in R^{n_h}\]

…(5)

我们也会使用相同的带type-specific hyper-params的transformer来生成explicit negative feedback embedding \(f_d\)以及从dislike和unclick behaviors中的implicit negative feedback embedding \(f_u\)。internal feedback interaction component可以很好地捕获在每种类型的feedback序列中target item和behaviors的behavior-level interactions。它可以提供与target item相关的user positive和negative偏好。

External Feedback Interaction Component

隐式负反馈(implicit negative feedbacks)是够多的,但有非常noisy。总之,unclick behaviors看起来暗示着negative signals,而曝露给用户的items则需通过特定策略进行选择,它也会包含来自粗粒度的用户兴趣。external feedback interaction组件的目标是,根据在click和dislike行为上的强反馈,来区别用户在未点击行为(unclick behaviors)上的真实喜欢(like)和不喜欢(dislike)。特别的,我们通过两个vanilla attentions,它会考虑隐式正反馈和隐式负反馈的embeddings \(f_c\)和\(f_d\)作为instructors来指导来自unclick序列\(u_1, \cdots, u_{n_3}\)。我们将unclick-dislike interaction embedding \(f_{ud}\)使用dislike和unclick行为公式化:

\[f_{ud} = \sum\limits_{i=1}^{n_3} \alpha_i u_i, \alpha_i = \frac{f(f_d, u_i)}{\sum_{j=1}^{n_3} f(f_d, u_j)}\]

…(6)

其中,weighting score function \(f(a,b)\)定义如下:

\[f(a, b) = MLP(concat(a, b, a-b, a\odot b))\]

…(7)

我们将\(\odot\)看成是element-wise product,并使用一个2-layer Multi-layer perceptron (MLP)。\(f_d\)包含了user的强的negative偏好,它从与target item相关的显式负反馈(explicit negative feedbacks)进行重定义得到。它会帮助vanilla attention来抽取用户真实dislike和unclick行为的items。我们也会使用隐式正反馈(implicit positive feedback)的embedding \(f_c\)来放大在unclick行为中positive的声音。

\[f_{uc} = \sum\limits_{i=1}^{n_3} \beta_i u_i, \beta = \frac{f(f_c, u_i)}{\sum_{j=1}^{n_3} f(f_c, u_j)}\]

…(8)

最后,我们将所有5种feedback features组合来构建最终的refined feedback feature \(f_{Feed}\):

\[f_{Feed} = \lbrace f_c, f_d, f_u, f_{uc}, f_{ud}\rbrace\]

…(9)

隐式正反馈与显式负反馈\(f_c\)和\(f_d\)被看成是强的positive和negative信号,而其余unclick-related feedbacks则被看成是弱信号(weak signals)。

3.3 Feature Interaction Module

在feature interaction中,我们将refined feedback feature与其它features(包括:user profiles、item features、以及context)进行refined。根据Guo[2017],我们将这些sparse features进行group到m个fields中 \(\lbrace x_1, \cdots, x_m \rbrace\)包括:continuous fields(例如:age)和categorical fields(例如:location)。所有的fields被表示成one-hot embeddings。一个lookup table被用于生成所有fields的dense feature:\(\lbrace f_1, \cdots, f_m \rbrace\)。我们为feature interaction实现了Wide, FM以及Deep components。

Wide Component

Wide component是一个泛化的linear model,它在推荐中被广泛使用。Wide component \(y^{Wide}\)的output是一个m-dimensional的vector,其中,第i个element被计算成:

\[y_i^{Wide} = w_i^T x_i + b_i, w_i, x_i \in R^{n_{f_i}}\]

…(10)

\(w_i\)是第i个one-hot fields embedding \(x_i\)的weighting vector,\(b_i\)是bias,\(n_{f_i}\)是\(x_i\)的维度。

FM Component

FM component会捕获所有features间的二阶交叉。FM的input embeddings是所有dense features的组合,最终的refined feedback feature为:\(F' = \lbrace f_1, \cdots, f_m, f_{Feed}\rbrace\)。我们根据Bi-interaction layer,并根据下面方式生成output embedding \(y^{FM}\):

\[y^{FM} = \sum\limits_{i=1}^{m+5} \sum\limits_{j=i+1}^{m+5} f_i^' \odot f_j^', f_i^', f_j^' \in F'\]

…(11)

Deep component

在Deep component中,我们实现了一个2-layer MLP来学习高阶feature interactions。input是dense features和feedback features的concatenation,可以表示成:\(f^{(0)} = concat(f_1, \cdots, f_m, f_{Feed})\)。我们有:

\[y^{Deep} = f^{(2)}, f^{(i+1)} = ReLU(W^{(i)} f^{(i)} + b^{(i)})\]

…(12)

其中,\(f^{(i)}\)是第i个layer的output embedding。\(W^{(i)}\)是weighting matrix,\(b^{(i)}\)是第i个layer的bias。

最终,我们从三个components中将所有outputs进行concat起来来生成aggregated feature embedding y:

\[y = concat(y^{Wide}, y^{FM}, y^{Deep})\]

…(13)

3.4 Optimization Objective

我们使用click、unclick以及dislike行为来进行监督训练。预测的点击概率与aggregated feature embedding y通过下式计算:

\[p(x) = \sigma(w_p^T y)\]

…(14)

\(w_p\)是weighting vector,\(\sigma(\cdot)\)是sigmoid function。DFN的loss function包含了三个部分:click、unclick、dislike行为:

\[L = -\frac{1}{N} (\lambda_c \sum\limits_{S_c} log p(x) + \lambda_u \sum\limits_{S_u} log(1 - p(x)) + \lambda_d \sum\limits_{S_d} log(1-p(x)))\]

…(15)

该训练集具有N个实例,分组成:click set \(S_c\),dislike set \(S_d\)以及unclick set \(S_u\)。\(\lambda_c, \lambda_d, \lambda_u\)是不同losses的weights来measure不同feedbacks的重要性。

4.实验

参考

JD在《Category-Specific CNN for Visual-aware CTR Prediction at JD.com》提出了CSCNN:

1.介绍

JD领先的广告系统,会服务数百万广告主(advertisers)与数十亿顾客(customers)相连。每天,顾客会访问JD,点击ads并留下数十亿的交互日志。这些数据不仅会反馈给到学到的系统,但也会增强技术演进提升用户体验。

在常见的CPC广告系统中,广告会通过eCPM进行排序,商品的竞价通过advertisers给出,广告系统则会预测CTR。精准的CTR预测对商业效果和用户体验有用。因而,该topic在机器学习界和工业界被广泛关注。

大多数广告会使用图片进行展示,因为它们具有更多的视觉展示,并对于文本描述能传达更丰富的信息。一个有意思的现象是,许多广告通过切换更吸引人的图片会获得更高的CTR。对于CTR预测,这驱使了关于提取更丰富可视化特征的许多研究。这些算法会采用现成的(off-the-shelf)的CNNs来抽取可视化特征,并将它们与非可视化的特征(non-visual features:比如:category, user)进行混合来进行最终CTR预测。有了额外的可视化特征,这些算法在离线实验上可以远胜过无可视化的模型,并可以泛化到冷门和长尾ads上。在实际在线广告系统中使用CNN仍然是non-trival的。使用CNN进行offline end-to-end训练必须足够有效遵循随时间变化(time-varying)的在线分布,online serving需要广告系统的满足低时延要求。

另外,我们注意到,在电商中的可视化特征抽取与图片分类的setting有大不同。在分类任务中,categories会被看成是要预测的target。而在电商系统中,广告的categories会被明显地进行标记,它包含了丰富的可视化先验信息,可以帮助进行可视化建模。一些学术研究通过在CNN embeddings的top之上[7]构建category-specific投影矩阵进行集成,并将可视化features显式解耦成styles和categories。这些研究会共享一个公共的架构:visual和categorical knowledge的late fusion,然而,它对于CTR预测来说是sub-optimal。也就是说,image embedding模块很少会利用categorical knowledge。如果不知道ad category,通过这些CNNs抽取的embedding会包含与该category不相关的不必要features,从而浪费CNN的有限表达能力。相反,如果该ad category被集成其中,CNN只需要关注category-specific patterns,它会减轻训练过程

为了克服工业挑战,我们会同时为有效的end-to-end CNN training和低时延在线服务构建优化的基础设施。基于该有效地基础设施,为了充分利用电商中的labeled category,我们为CTR预测任务特别提出Category-specific CNN (CSCNN)。我们的关键思想是,以一个early-fusion的方式将category知识插入到CNN中。受SE-net、以及CBAM的启发,它会使用一个light-weighted self-attention模块来建模convolutional features间的相互依赖,CSCNN会进一步吸收ad category知识,并执行一个category-specific feature recalibration,如图2所示。更明显地,我们会接着使用category-specific channel和spatial attention modules来强调重要的以及与category相关的features。这些丰富的可视化特征对于CTR预测问题来说有巨大的效果增益。

总之,我们有以下的贡献:

  • 据我们所知,我们是在visual-aware CTR预测中首个对visual和non-visual features的late fusion的负面影响进行强调的。
  • 我们提出了CSCNN,为CTR预测特别设计了一个新的visual embedding模块。关键思想是组织category-specific channel和spatial self-attention来强调重要并且与category相关的特征。
  • 我们通过大量离线实验、以及AB test验证了CSCNN的有效性。我们验证了许多self-attention机制的效果,以及network backbones通过插入CSCNN来进行一致性提升。
  • 我们构建了高度有效地基础设施在real online电商广告系统中来使用CNN。在一天内100亿规模的真实产品数据集上,引入有效加速方法来对CNN完成end-to-end training,并满足在线系统的低时延需求(在CPU上20ms)。CSCNN已经被部署在JD的搜索广告系统中。

2.相关工作

2.1 CTR预测

2.2 CNN中的attention机制

attention机制是一个重要的feature selection方法,它可以帮助CNN来强调feature maps的重要部分,并抑制不重要的部分。spatial attention会告诉你关注where,而channel-wise attention则告诉你focus在what上。

在文献中,许多工作尝试从feature map中学习attention weights,称为“self-attention”。SOTA的算法称为CBAM, SE。除了self attention外,attention weights可以有额外的信息为条件,例如自然语言。成功应用的领域包括:language、image captioning以及可视化问答。

我们的工作受attention机制的启发。而非vision & language,我们设计了新的架构来使用attention机制来解决一个重要但长期忽略的问题:对于vision和non-vision feature的sub-optimal late fusion。我们同时将self-attention和attention conditioned on external information(称为:ad category)两者的优点相结合。作为结果,我们的图片embedding能够强调important和category相关的features。

3. JD中的CTR预测

我们首先review了3.1节中的CTR预测的背景。接着,我们描述了CTR预测系统的架构。我们会进一步挖掘新的visual modeling模块的细节。最终,我们会引入必要的加速策略来进行在线部署。表1中总结了相关概念。

3.1 先决条件

在在线广告工业界,一个ad会在一些contexts下被展示给一个user,该情景被记成一次曝光(impression)。CTR预测的目标是:在发生一次impression(ad, user, contexts)时,预测一次positive feedback(例如:click)的概率。准确的CTR预测直接有益于用户体验和商业效果,这使得该任务对于整个广告工业来说很重要。

CTR预测通常被公式化成二分类问题。特别的,它会从一个training set \(D = \lbrace (x_1, y_1), \cdots, (x_{\mid D \mid}, y_{\mid D \mid} )\rbrace\)中学习一个预测函数f: \(R^d \rightarrow R\),,其中\(x_i \in R^d\)是第i次impression的feature vector,\(y_i \in \lbrace 0,1 \rbrace\)是class label表示一个click是否发生。

目标函数被定义成负的log-likelihood:

\[l(D) = - \frac{1}{|D|} \sum\limits_{i=1}^{|D|} y_i log(\hat{y}_i) + (1-y_i)log(1-\hat{y}_i)\]

…(1)

其中,\(\hat{y}_i\)是predicted CTR,通过sigmoid \(\sigma\)归一化到(0, 1)中:

\[\hat{y}_i = \sigma(f(x_i))\]

…(2)

3.2 CTR预测系统的架构

我们现在描述了我们的CTR预测系统的架构,如图1所示。

图片名称

图1. CTR预测系统的架构。左下角:CSCNN,它会将一个ad image与它的category一起嵌入到一个visual feature vector \(x_v \in R^{150}\)中。注意,CSCNN只在offline下运行。而在online serving系统中,为了满足低时延需求,我们会使用一个高效的lookup table进行替代。右下角:non-visual feature embedding,从(ad, user, contexts)到一个non-visual feature vector \(x_{nv} \in R^{380}\)。TOP:主要架构,一个修改版的DCN,它会采用visual feature \(x_v\)和non-visual feature \(x_nv\)作为inputs。

3.2.1 DCN

DCN网络可以得到可靠的效果,它可以学到有效的特征交叉。这里,我们将DCN修改成两个inputs:

  • 一个non-visual feature vector \(x_{nv} \in R^{380}\)
  • 一个visual feature vector \(x_v \in R^{150}\)

visual feature被包含在deep net中。在layer 1中,我们将non-visual feature转换成1024维,并将它们与visual feature进行concatenate起来:

\[h_1 = [x_v, ReLU-MLP(x_{nv})] \in R^{150 + 1024}\]

…(3)

接着跟两个deep layers:

\[h_{l+1} = ReLU-MLP(h_l), l \in \lbrace 1, 2\rbrace, h_2 \in R^{512}, h_3 \in R^{256}\]

…(4)

cross net用于处理non-visual feature:

\[z_{l+1} = z_0 z_l^T w_l + b_l + z_l\]

…(5)

其中,对于layer \(l \in \lbrace 0, 1, 2\rbrace\),input \(z_0 = x_{nv}\)。

最终,我们会为predicted CTR组合outputs:

\[\hat{y} = \sigma(ReLU-MLP[h_3, z_3])\]

…(6)

3.2.2 Non-visual Feature Embedding

我们现在描述embedding layer会将一次impression(ad, user, contexts)的raw non-visual features转成vector \(x_{nv}\).

我们假设:所有features以categorical的形式进来(例如:binning,预处理后)。通常,一个categorical feature会以one-hot / multi-hot vector \(x_hot \in \lbrace 0,1 \rbrace^v\)的方式编码,其中v是该feature的vocab size。我们以如下方式展示两条样本:

WeekDay=Web  ==>  [0,0,0,1,0,0,0]
TitleWords=[Summer,Dress] ==> [..., 0,1,0, ..., 0,1,0...]

不幸的是,该one/multi-hot coding不能应用于工业界系统,因为高维稀疏性。我们在我们的系统上采用一个低维的embedding策略:

\[x_{emb} = E_{x_{hot}}\]

…(7)

其中:

  • \(E \in R^{d_e \times v}\)是对于该specific feature的embedding字典
  • \(d_e\)是embedding size

我们接着将\(x_{emb}\)的所有features进行concatenate来构建\(x_{nv}\).

实际上,我们的系统会使用来自用户的95个non-visual features(历史点击/购买,location),ads(category, title, #reviews等)以及rich contexts(query words, visit time等),总共有70亿vocab。设置\(d_e = 4\),总的维度是95 x 4 = 380. 我们将进一步引入features和其它statistics。

3.3 Category-Specific CNN

converntional预测系统大多数使用off-the-shelf CNN来嵌入ad图片。我们将它称为“off-the-shelf”,是因为它原始是用来分类设计的,而不是CTR预测。他们将image category看成是要预测的target,而非inputs。这实际上在电商平台上是一个巨大的浪费,因为:categories会被精准标记,并包含丰富的可视化先验知识,可以用于visual modeling。

我们针对CTR预测通过提出一种新的CNN(Category-Specific CNN)来解决该问题,它会嵌入一个ad图片m,并与ad category \(k \in K\)一起concat到visual feature \(x_v\)上。特别的,category prior knowledge被编码成category embeddings(与CTR模型联合训练),并使用一个conditional attention机制来包含CNN。

理论上,CSCNN可以被用来在任意网络中当做任意的convoluation layer。在我们的系统中,我们插入CSCNN到ResNet18.

3.3.1 单个convolutional layer上的框架

对于每个category k以及每个convolutional layer l,CSCNN会学习一个 tensor \(A_c^k \in R^{1 \times 1 \times C'}\),它会为该layer编码category prior knowledge在channel-wise attention上的影响。我们会出于简洁性,忽略subscript l。框架如图2所示。

图片名称

图2 我们提出的Category-Specific CNN框架。注意CSCNN可以被添加到任意单个convolutional layer上,但出于简单演示,我们只展示了单个layer的细节。TOP:一个将category映射到category prior knowledge的map,它会影响channel-wise & spatial attentions。Bottom:F是当前convolutional layer上的output feature map。通过顺序使用channel-wise和spatial attention进行refined,新的feature map F’‘被当成下一layer的input使用

给定一个intermediate feature map \(F \in R^{H \times W \times C}\),convolutional layer l的output,CSCNN会首先学习一个channel attention map \(M_c \in R^{1 \times 1 \times C}\),它基于当前feature map和category为条件。接着,channel-wise attention会被乘上feature map来获得一个重新定义的feature map \(F' \in R^{H \times W \times C}\),

\[F' = M_c (F, A_c^k) \odot F\]

…(8)

其中,\(\odot\)表示与\(M_c\)的element-wise product,它沿着spatial维度\(H \times W\)进行广播。

相似的,CSCNN也会学到另一个tensor \(A_s^k \in R^{H \times W \times 1}\),它会为spatial attention \(M_S \IN R^{H \times W \times 1}\)对category prior knowledge进行编码。这两个attention模块被顺序用来获得一个3D的refined feature map \(F'' \in R^{H \times W \times C}\):

\[F'' = M_s(F', A_s^k) \odot F'\]

…(9)

其中,spatial attention会在element-wise product之前沿着channel维度进行广播。一个实际的关注点是,在\(A_s^k\)中存在大量参数,尤其是在前几层。为了解决该问题,我们提出只学习一个更小的tensor \(A_s^{'k} \in R^{H' \times W' \times 1}\),其中\(H' << H\)以及\(W' << W\),接着通过线性插件(linear interpolation)将它进行resize到\(A_s^k\)。\(H'\)和\(W'\)的作用会在后面实验结果进行讨论。注意,\(A_s^k\)和\(A_c^k\)会随机初始化并在训练期间学习,除category id外不需要额外的category prior knowledge。

channel-wise和spatial attention两者都被重新定义后,\(F''\)会被fed给下一layer。注意,CSCNN会被添加到任意CNNs上,通过只将input的F替代成next layer的\(F''\)。

3.3.2 category-specific channel-wise Attention

channel-wise attention会告诉要关注”what”。除了之前的inter-channel关系外,我们也会利用category prior knowledge和features间的关系(图3)。

图片名称

图3

为了收集spatial信息,我们首先将F的spatial dimension通过max和average pooling进行挤压(squeeze)。采用两者的优点由CBAM的实验所支持验证。两个squeezed feature maps接着与category prior knowledge \(A_c^k\)进行concatenated一起,并通过一个共享的two layer MLP进行froward传递,将维度从\(1 \times 1 \times (C + C')\)减小到\(1 \times 1 \times C\)上。最终,我们通过element-wise summation进行合并。

\[M_c(F, A_c^k) = \sigma(MLP[Avg P(F), A_c^k] + MLP[MaxP(F), A_c^k])\]

…(10)

3.3.3 Category-specific Spatial Attention

我们的spatial attention module如图3(bottom)。Spaital attention会通过利用features的inter-spatial关系,告诉需要关注哪里。受CBAM的影响,我们首先通过average pooling和max pooling沿着channel的维度聚合feature map \(F'\)的channel-wise信息。为了包含category prior knowledge,这两者接着与\(A_s^k\)进行concatenate一起来形成一个\(H \times W \times 3\)维度的feature map。最终,该feature map通过一个\(7 \times 7\)的convolutional filter进行传递来获得attention weights。

\[M_s(F', A_s^k) = \sigma(Conv_{7 \times 7}(Max P(F'), Avg P(F'), A_s^k))\]

…(11)

3.3.4 复杂度分析

注意,CSCNN实际上是一个轻量级module。特别的,我们在表2中展示了Baseline、CBAM以及我们的算法在参数数目和giga floating-point operations(GFLOPs)上的对比。

我们设轩\(C \in \lbrace 64, 128, 256, 512 \rbrace, C'=20\),瓶颈下降至4, #categories \(\mid K \mid =3310\)(表7中的real production dataset)。在CBAM中的每个convolutional yer中的“shared FC”中,参数数目是\(2 * C * C / 4\)。对于CSCNN,FC中的参数数目和channel category embedding是\(C * C / 4 + (C + C')*C/ 4 + C' * \mid K \mid\)。在channel attention中,参数数目的增加对比CBAM是1个conv layer为67-69k。另外,\(W' = H' = 6\),在spatial attention中的额外参数数目是\(W' * H' * \mid K \mid + 6 * 6 \approx 120k\)。因此,总参数的增加为(120k + 68k) * 16 layers = 3.0M。额外的参数引入是可接受的,对比CBAM,额外计算只有0.03%。

3.4 系统部署

我们在搜索广告系统部署了CSCNN。图4描述了我们在线模型系统的架构。

图片名称

图4

3.4.1 offline training

CSCNN会与整个CTR prediction系统进行jointly train,最近32天收集的100亿规模的直实数据集。在我们之前的调查中,CNN是训练期间的关键计算瓶颈。采用ResNet18 network,它的input pic size为224 x 224,单机4个P40 GPUs只能每天训练1.77亿图片。这意味着在分布式训练中加速CSCNN,我们需要226 P40 GPUs来计算1天内的100亿曝光,这很昂贵。为了加速,我们采用[2]中的sampling strategy。具有相同的ad的大约25个曝光(impressions)会收集成一个batch。一张图片的image embedding只需要管理一次,并在该batch中传播给多次曝光。有了28张P40 GPUs后,训练可以在1天内完成。

3.4.2 Offline inferring

images和categories会被feed到一个well trained CSCNN中来infer那些visual features。Fearures会传到一个lookup table中,接着在predictor memory中加载来替换CSCNN。在维度减小和频控后,一个20GB的lookup table可以覆盖超过下一天曝光的90%。

3.4.3 Online serving

一旦收到请求,visual features会直接从lookup table根据ad id进行发现。predictor会返回一个estimated CTR。在流量高峰中,每秒有超过3亿的items的吞吐量,我们的CPU online serving系统的tp99 latency会在20ms以下。

4.实验结果

参考

北大在《AutoInt: Automatic Feature Interaction Learning via Self-Attentive Neural Networks》提出了AutoInt,我们来看下。

摘要

CTR预估的目标是,预测一个用户在一个ad或item上的概率,它对于许多在线应用(比如在线广告和推荐系统)很关键。但存在许多挑战,因为:

  • 1) input features(例如:user id、user age、item id、item category)通常是稀疏高维
  • 2) 有效的预测通常依赖于高阶组合特征(cross features),由domain experts手工处理非常耗时,很难穷举。因此,对于稀疏高维原始特征,以及它们的特征组合,发现它们的低维表示需要一些工作。

本文提出了一种有效方法:AutoInt来自动学习关于input features的高阶特征交叉。我们提出的算法非常通用,它可以被同时应用到numerical和categorical的input features上。特别的,我们会将numerical和categorical features映射到相同的低维空间中。接着,使用一个带residual connections的multihead self-attentive neural network来显式建模在低维空间中的feature interactions。整个模型可以通过end-to-end的方式有效满足大规模的原始数据。具体代码:: https://github.com/DeepGraphLearning/RecommenderSystems

3.问题定义

我们首先正义定义ctr预测问题:

定义1: CTR Prediction

假设:\(x \in R^n\)表示user u的features和item v的features的concatenation,其中:

  • categorical features使用one-hot encoding表示
  • n是concatenated features的维度

那么,CTR预测的问题的目标是:预测user u根据feature vector x在item v上的点击概率。

CTR预测的一个简单做法是:将x看成是input features,并部署类似于LR的分类器进行预测。然而,由于原始featrue vector x非常稀疏且高维,模型很容易overfit。因此,在低维连续空间中表示raw input features是可行的。另外,在其它文献中,利用高阶组合特征来生成好的预测表现很重要。特别的,我们以如下方式定义高阶组合特征:

定义2: p-order组合特征

给定input feature vector \(x \in R^n\),一个p阶组合特征被定义成:

\[g(x_{i_1}, \cdots, x_{i_p})\]

其中:每个feature来自一个不同的field

  • p是feature fields的数目
  • \(g(\cdot)\)是non-additive combination function,比如:乘法 和 外积,例如:\(x_{i_1} \times x_{i_2}\)是一个关于\(x_{i_1}\)和\(x_{i_2}\)的二阶组合特征

传统的,有意义的高阶组合特征(high-order comibatorial features)可以通过domain experts进行人工构建。然而,这非常耗时,很难泛化到其它domains上。另外,手工构建所有有意义的高阶特征是不可能的。因此,我们开发了一种方法来自动发现有意义的高阶组合特征,同时将所有这些features映射到低维连续空间上,正式地,我们以如下方式定义问题:

定义3: 问题定义

给定一个input feature vector \(x \in R^n\)用于ctr预测,我们的目标是:学习一个关于x的低维表示,它会建模高阶组合特征。

4.AutoInt

4.1 总览

我们的方法会将原始稀疏高维feature vector映射到低维空间上,同时建模高阶特征交叉。如图1所示,我们提出的方法会将sparse feature vector x作为input,后跟一个embedding layer,它会将所有features(包括:categorical和numerical)投影到相同的低维空间上。接着,我们将所有fields的embeddings feed到一个新的interacting layer上,它使用一个multi-head self-attentive neural network来实现。对于每个interacting layer,高阶features通过attention机制来组合,不同类型的combinations可以使用multi-head机制进行评估,它会将features映射到不同的subspaces上。通过将多个interacting layers进行stacking,不同阶的combinatorial features可以被建模。

图片名称

图1

最终interacting layer的output是input feature的低维表示,它可以建模high-order组合特征,进一步通过一个sigmoid function用来估计ctr。接着,我们会详细介绍。

4.2 Input Layer

我们首先表示user profiles和item属性作为一个sparse vector,它是所有fields的concatenation。特别的:

\[x = [x_1; x_2; \cdots; x_M]\]

…(1)

其中:

  • M是总的feature fields的数目
  • \(x_i\)是第i个fields的feature representation

当第i个field是categorical时,\(x_i\)是一个one-hot vector(例如:在图2中的\(x_1\));当第i个field为numerical时,\(x_i\)是一个scalar value(例如:图2中的\(x_M\))。

图片名称

图2

4.3 Embedding Layer

由于categorical features的feature表示是非常稀疏高维的,一种常用方式是将它们表示成低维空间(例如:world embeddings)。特别的,我们将每个categorical feature使用一个低维vector来表示:

\[e_i = V_i x_i\]

…(2)

其中:

  • \(V_i\)是field i的一个embedding matrix
  • \(x_i\)是一个one-hot vector

通常,categorical features可以是multi-valued,例如:\(x_i\)是一个multi-hot vector。以电影观看预测为例,由于有个Genre的feature field,它会描述一个电影的types,它通常是multi-valued(例如:对于电影来说”Titanic”是Drama和Romance)。为了兼容multi-valued inputs,我们进一步修改等式(2),将multi-valued feature表示成相应feature embedding vectors的平均

\[e_i = \frac{1}{q} V_i x_i\]

…(3)

其中:

  • q是样本对于第i个field的values的数目
  • \(x_i\)是该field的multi-hot vector表示

为了允许categorical和numerical features的特征交叉,我们在相同的低维特征空间中表示numerical features。特别的,我们将numerical feature表示成:

\[e_m = v_m x_m\]

…(4)

其中:

  • \(v_m\)是field m的一个embedding vector
  • \(x_m\)是一个scalar value

通过这么做,embedding layer的output可以是一个关于多个embedding vectors的concatenation,如图2表示。

4.4 Interacting layer

一旦numerical和categorical features在相同的低维空间中存在,我们会在该空间中建模高阶组合特征(high-order cominatorical features)。关键问题是决定:哪个features应该被组合来形成有意义的high-order features。这在传统上由domain experts完成,它们会基于经验来创建有意义的特征组合。在本paper中,我们使用一个新方法“multi-head self-attention”机制来解决该问题。

Multi-head self-attentive network已经在建模复杂关系中取得了很好的效果。例如,它在机器翻译和句子embedding上,对于建模特别的word dependency具有优越性,已经被成功应用到捕获在graph embedding中的node相似性。这里,我们会将这些最新技术进行扩展来建模不同feature fields间的相关性。

特别的,我们采用key-value attention机制来决定,哪个feature combinations是有意义的。以feature m为例,接下来我们将解释如何标识涉及feature m的多个有意义的高阶特征。我们首先定义:feature m和feature k间在一个指定attention head h下的相关性:

\[a_{m,k}^{(h)} = \frac{exp(\phi^{(h)} (e_m, e_k))}{\sum_{l=1}^M exp(\phi^{(h)} (e_m, e_l))} \\ \phi^{(h)}(e_m, e_k)= <W_{Query}^{(h)} e_m, W_{Key}^{(h)} e_k>\]

…(5)

其中,\(\phi^{(h)} (\cdot, \cdot)\)是一个attention function,它定义了feature m和k间的相似性。它可以定义成一个neural network,或者一个简单的内积,例如:\(<\cdot, \cdot>\)。在本工作中,我们使用inner product是因为它的简单和有效。等式(5)中的\(W_{Query}^{(h)}, W_{Key}^{(h)} \in R^{d' \times d}\)是transformation矩阵,它冷却将原始的embedding space \(R^d\)映射到一个新的空间\(R^{d'}\)中。接着,我们会在子空间h中更新feature m的表示,通过将所有由系数\(a_{m,k}^{(h)}\)指定的所有相关特征进行组合来完成:

\[\bar{e}_m^{(h)} = \sum_{k=1}^M a_{m,k}^{(h)} (W_{Value}^{(h)} e_k)\]

…(6)

其中,\(W_{Value}^{(h)} \in R^{d' \times d}\)

由于,\(\bar{e}_m^{(h)} \in R^{d'}\)是一个feature m和它相关features(在head h下)的组合,它可以表示成由我们的方法学到的一个新的组合特征。考虑气候,个维护feature不能上课测IHI而已工程i莫高窟人combinatorial features,我们可以使用多个heads来达成,它可以创建不同的subspaces并分别学习不同的feature interactions。我们以如下方式收集在所有subspaces中学到的combinatorial features:

\[\bar{e}_m = \bar{m}^{(1)} \oplus \bar{m}^{(2)} \oplus \cdots \oplus \bar{m}^{(H)}\]

…(7)

其中,\(\oplus\)是concatenation operator,其中H是total heads的数目。

图片名称

图3

为了保留之前学到的combinatorial features,包含raw individual (例如:一阶) features,我们在网络中添加标准的residual connections:

\[e_m^{Res} = ReLU(\bar{e}_m + W_{Res} e_m)\]

…(8)

其中,\(W_{Res} \in R^{d' H \times d}\)是关于didension mismatching的投影矩阵,其中,\(ReLU(z) = max(0, z)\)是一个非线性activation function。

有了这样的一个interacting layer,每个feature的表示\(e_m\)会被更新成一个新的feature representation \(e_m^{Res}\),它是一个高阶features的表示。我们可以将多个这样的layers进行stack,前一interacting layer的output可以做为下一interacting layer的input。通过这样做,我们可以建模任意阶的combinatorical features。

4.5 Output layer

interacting layer的output是一个关于feature vectors \(\lbrace e_m^{Res} \rbrace_{m=1}^M\)的集合,其中,包含了由residual block保留的raw individual features,以及由multi-head self-attention机制学到的combinatorial features。对于最终的CTR预测,我们可以将所有进行concatenate,接着应用一个非线性投影:

\[\hat{y} = \sigma(w^T (e_1^{Res} \oplus e_2^{Res} \oplus \cdots e_M^{Res} ) + b)\]

…(9)

其中,\(w \in R^{d' H M}\)是一个列投影向量,它可以对concatenated features进行线性组合,b是bias,\(\sigma(x) = 1 / (1+e^{-x})\)会将values转化成users的点击概率上。

4.6 训练

我们的loss funciton 是log loss,它根据以下进行定义:

\[Logloss = - \frac{1}{N} \sum_{j=1}^N (y_j log(\hat{y}_j + (1-y_j) log(1-\hat{y}_j))\]

…(10)

其中,\(y_j\)和\(\hat{y}_j\)分别是user clicks的ground truth和预估的CTR,j会索引训练样本,N是训练样本总数。模型中学习的参数是:\(\lbrace V_i, v_m, W_{Query}^(h), W_{Key}^{(h)}, W_{Value}^{(h)}, W_{Res}, w, b\rbrace\),它们会通过使用gradient descent方式对total Logloss进行最小化更新。

4.7 AutoInt分析

建模任意阶组合特征

给定由等式(5)-(8)的feature interaction的operator,我们接着分析低阶和高阶组合特征是如何建模的。

对假设存在四个feature fields(例如:M=4)分别由\(x_1, x_2, x_3与x_4\)各自表示。在第一个interacting layer,每个独立的feature会通过attention机制(等式5)与任意其它features进行交叉,因此会使用不同的相关weightes捕获二阶特征交叉:\(g(x_1,x_2), g(x_2, x_3), g(x_3, x_4)\),其中interaction function \(g(\cdot)\)的non-additive特性 (定义2)可以通过activation function \(ReLU(\cdot)\)的non-linearity来进行保证。理想的,涉及\(x_1\)的组合特征可以被编码成第一个feature field \(e_1^{Res}\)的updated representation。由于对于其它feature fields来说是相同的源头,所有二阶特征交叉可以被编码成第一个interacting layer的output,其中attention weights会distill有用的特征组合。

接下来,我们证明了高阶特征交叉可以在第二个interacting layer中建模。给定由第一个interacting layer生成的第一个feature field \(e_1^{Res}\)的representation、以及第三个feature field \(e_3^{Res}\),涉及\(x_1, x_2, x_3\)的三阶组合特征可以被建模,允许\(e_1^{Res}\)来attend on \(e_3^{Res}\),因为\(e_1^{Res}\)包含了interaction \(g(x_1, x_2)\)以及\(e_3^{Res}\)包含了单个特征\(x_3\)(来自residual connection)。另外,组合特征的最大阶会随着interacting layers的数目进行指数增长。 例如,四阶特征交叉\(g(x_1, x_2, x_3, x_4)\)可以通过\(e_1^{Res}\)和\(e_3^{Res}\)的组合进行捕获,它分别包含了二阶交叉\(g(x_1, x_2)\)以及\(g(x_3, x_4)\)。因此,少量的interacting layers足够去建模高阶特征交叉。

基于上述分析,我们可以看到,AutoInt会以一个hierarchical的方式使用attention机制来学习feature interactions,例如:从低阶到高阶,所有低阶特征交叉可以通过residual connections进行捎带。这是有保证且合理的,因为学习hierarchical representation已经在计算机视觉和语音处理中对于DNN来说相当有效。

空间复杂度(Space Complexity)

embedding layer,它在NN-based方法中是一个共享组件,包含了nd的参数,其中n是input feature的sparse representation的维度,d是embedding size。由于一个interacting layer包含了以下的weight matrics:\(\lbrace W_{Query}^{(h)} , W_{Key}^{(h)}, W_{Value}^{h}, W_{Res} \rbrace\),在一个L-layer network的参数数目是\(L \times (3d d' + d'Hd)\),它与feature fields M的数目是独立的。最终,在output layer中存在\(d' H M + 1\)个参数。只要interacting layers被关注,空间复杂度是\(O(Ldd'H)\)。注意,H和d’通常很小(例如:H=2 以及d’=32),它会使得interacting layer相当memory-efficient。

时间复杂度(TIme Complexity)

在每个interacting layer中,计算开销是two-fold的。首先,对于一个head计算attention weights会花费\(O(Mdd' + M^2 d')\)的时间。接着,在一个head下形成组合特征也会花费\(O(Md d' + M^2 d')\)的时间。由于我们有H个heads,它总共花费\(O(MHd'(M+d)))\)的时间。由于H, d, d’通常很小,所以很高效。

5.实验

参考