一种简单的个性化导航实现

Reading time ~1 minute

移动端时代的挑战:手机屏更小,输入更不便,信息过载问题更严重。

用户获取信息的方式:浏览 vs. 查询

点击距离(click-distance):

click-distance(i) = selects(i) + scrolls(i) i为item的意思。

1 个性化用户兴趣

两种点击:

  • static hit-table:大众的点击数据,one-size-fits-all
  • user hit-table:个人的点击数据

其中static hit-table如下:

某一个用户的hit-table如下:

然后根据此计算这个用户对每个item的喜好概率. 概率计算:

  • $ P(B A)=(20+10)/(40+100)=0.214 $
  • $ P(C A)=(20+90)/(40+100)=0.786 $
  • $ P(D A)=P(B A)P(D B)=(30/140)(10+5)/(20+10) = 0.107 $
  • $ P(E A)=P(B A)P(E B)=(30/140)(10+5)/(20+10) = 0.107 $
  • $ P(F A)=P(C A)P(F C)=(110/140)(10+80)/(20+90)=0.642 $
    -$ P(G A)=P(C A)P(G C)=(110/140)(10+10)/(20+90)=0.142 $

该用户的喜好排序为:C>F>B>G>D>E

2 个性化调整

ok,计算好了之后。需要对每个用户做menu的调整。调整方式采用的是:垂直提升(vertical promotions)。举个例子,原先如果是三层:根菜单-父菜单-菜单选项。菜单选项提升到父菜单级别,父菜单提升到根菜单级别。别外同级之间的相对位置也会进行调整。

3 指标评测

  • 平均点击距离(是否降低)
  • 平均每个session的平均导航时间(是否降低)
  • 平均内容浏览时间(是否提升)

参考:

1.personalization techniques and recommender systems, Gulden Uchyigit etc.

BERT4Rec介绍

# 介绍从历史行为中建模用户的动态偏好,对于推荐系统来说是个挑战。之前的方法采用序列神经网络以从左到右的方式将用户历史交互编码成隐表示,来生成推荐。尽管它们是有效的,这种从左到右的单向模型是次优的,我们对此仍有争论,因为有以下的限制:- a) 单向结构限制了在用户行为序列中...… Continue reading

youtube推荐强化学习介绍

Published on June 20, 2019

DSIN介绍

Published on May 27, 2019